Advertisement

Water, Air, & Soil Pollution

, 227:313 | Cite as

Assessment of Ozone Variations and Meteorological Influences in West Center of Brazil, from 2004 to 2010

  • Amaury de Souza
  • Elvira Kovač-AndrićEmail author
  • Brunislav Matasović
  • Berislav Marković
Article

Abstract

The study of the time series from the township of Campo Grande in the State of Mato Grosso do Sul (from January 2004 to 31 December 2010) is presented. Various statistical methods were used for the data analysis. Using robust statistics, very pronounced skewness of the ozone volume part distribution during each month of the year was obtained. The variability in data is the largest during a month of September. The average annual values have asymmetrical distribution of the ozone volume fraction. Within the measured period, these averages are between 15 and 20 ppb. Particularly pronounced ozone distribution asymmetry throughout the year 2007 could be explained by observing meteorological parameters. Principal component analysis (PCA) presented here clearly shows that air temperature and wind speed are contributing factors in ozone formation, while relative humidity and atmospheric pressure cause the decrease in the ozone volume fraction in the air. Further, the hierarchical cluster analysis (CA) was performed for meteorological and ozone data using the Ward’s methods. The correlation between ozone and the effective temperature index (TEv) showed a development of the ozone with high temperature of air. From the Pearson’s correlation coefficients, it is clear that the relative humidity and the air temperature have a negative effect on respiratory system, causing respiratory illnesses.

Keywords

Ozone Robust statistics PCA CA TEv 

Notes

Acknowledgments

The authors gratefully acknowledge the Secretary for Municipal Health and EMPRAPA research station in Campo Grande, Brazil.

References

  1. Anunciação, V. S., & Sant’Anna Neto, J. L. (2002). Urban Climate of the City of Campo Grande-MS (in Portuguese). In: J. L. Sant’Anna Neto (Ed.), Org., Os climas das cidades brasileiras (pp. 22–35). São Paulo: Editora da UNESP, Presidente Prudente.Google Scholar
  2. Atkinson, R. W., Anderson, H. R., Sunyer, J., Ayres, J., Baccini, M., Vonk, J. M., Boumghar, A., Forastiere, F., Forsberg, B., Touloumi, G., Schwartz, J., & Katsouyanni, K. (2001). Acute effects of particulate air pollution on respiratory admissions: results from APHEA 2 project. American Journal of Respiratory and Critical Care Medicine, 164, 1860–1866.CrossRefGoogle Scholar
  3. Bakonyi, S. M. C., Danni-Oliveira, I. M., Martins, L. C., & Braga, A. L. F. (2004). Air pollution and respiratory diseases among children in Brazil. Revista de Saúde Pública, 38, 1–5.CrossRefGoogle Scholar
  4. Banja M, Papanastasiou DK, Poupkou A, Melas D (2012) Development of a short-term ozone prediction tool in Tirana area based on meteorological variables. Atmos Pollut Res 3:32–38Google Scholar
  5. Bard, A. J., Stratmann, M., Schloz, F., Pickett, C. J. (2006). Encyclopedia of Electrochemistry, volume 7A, Inorganic Chemistry (pp. 64). Weinheim: John Wiley and Sons.Google Scholar
  6. Braga, A. L. F., Conceição, G. M. C., Pereira, L. A. A., Kishi, H. S., Pereira, J. C. R., Andrade, M. F., Gonçalves, F. L. T., Saldiva, P. H. N., & Latorre, M. R. D. O. (1999). Air pollution and pediatric respiratory hospital admissions in São Paulo, Brazil. Journal of Environmental Medicine, 1, 95–102.CrossRefGoogle Scholar
  7. Calinski, T., & Harabasz, J. (1974). A dendrite method for cluster analysis. Communications in Statistics, 3, 1–27.CrossRefGoogle Scholar
  8. Cvitaš, T., Klasinc, L., Kezele, N., McGlynn, S. P., & Pryor, W. A. (2005). New directions: how dangerous is ozone? Atmospheric Environment, 39, 4607–4608.CrossRefGoogle Scholar
  9. Dallacort, R., Moreira, P. S. P., Inoue, M. H., Silva, D. J., Carvalho, I. F., & Santos, C. (2010). Wind speed and direction characterization in Tangará da Serra, Mato Grosso state, Brazil. Revista Brasileira de Meteorologia, 25, 359–364.CrossRefGoogle Scholar
  10. Daszykowski, M., Kaczmarek, K., Vander Heyden, Y., & Walczak, B. (2007). Robust statistics in data analysis—a review basic concepts. Chemometrics and Intelligent Laboratory Systems, 85, 203–219.CrossRefGoogle Scholar
  11. Džepina, K., Mazzoleni, C., Fialho, P., China, S., Zhang, B., Owen, R. C., Helmig, D., Hueber, J., Kumar, S., Perlinger, J. A., Kramer, L. J., Dziobak, M. P., Ampadu, M. T., Olsen, S., Wuebbles, D. J., & Mazzoleni, L. R. (2015). Molecular characterization of free tropospheric aerosol collected at the Pico Mountain Observatory: a case study with a long-range transported biomass burning plume. Atmospheric Chemistry and Physics, 15, 5047–5068.CrossRefGoogle Scholar
  12. Fanger, P. O. (1972). Thermal confort. New York: McGraw-Hill Book Company.Google Scholar
  13. Fátima, A. M., Fornaro, A., de Dias, F. E., Mazzoli, C. R., Martins, L. D., Boian, C., Oliveira, M. G. L., Peres, J., Carbone, S., Alvalá, P., & Leme, N. P. (2012). Ozone sounding in the Metropolitan Area of São Paulo, Brazil: wet and dry season campaigns of 2006. Atmospheric Environment, 61, 627–640.CrossRefGoogle Scholar
  14. Fine, R., Miller, M. B., Burley, J., Jaffe, S. A., Pierce, R. B., Lin, M., & Gustin, M. S. (2015). Variability and sources of surface ozone at rural sites in Nevada, USA: results from two years of the Nevada Rural Ozone Initiative. Science of the Total Environment, 530–531, 471–482.CrossRefGoogle Scholar
  15. Fischer, E. V., Jacob, D. J., Yantosca, R. M., Sulprizio, M. P., Millet, D. B., Mao, J., Paulot, F., Singh, H. B., Roiger, A., Ries, L., Talbot, R. W., Džepina, K., & Pandey Deolal, S. (2014). Atmospheric peroxyacetyl nitrate (PAN): a global budget and source attribution. Atmospheric Chemistry and Physics, 14, 2679–2698.CrossRefGoogle Scholar
  16. Fishman, J. (1991). The global consequences of increasing tropospheric ozone concentrations. Chemosphere, 22, 685–695.CrossRefGoogle Scholar
  17. Giles, J. (2005). Hikes in surface ozone could suffocate crops. Nature, 435, 7.CrossRefGoogle Scholar
  18. Gouveia, N., & Fletcher, T. (2000). Respiratory diseases in children and outdoor air pollution in São Paulo, Brazil: a time series analysis. Occupational and Environmental Medicine, 57, 477–483.CrossRefGoogle Scholar
  19. Kovač-Andrić, E., Brana, J., & Gvozdić, V. (2009). Impact of meteorological factors on ozone concentrations modelled by time series analysis and multivariate statistical methods. Ecological Informatics, 4(2), 117–122.CrossRefGoogle Scholar
  20. Kovač-Andrić, E., Šorgo, G., Kezele, N., Cvitaš, T., & Klasinc, L. (2010). Photochemical pollution indicators-an analysis of 12 European monitoring stations. Environmental Monitoring and Assessment, 165, 577–583.CrossRefGoogle Scholar
  21. Kovač-Andrić, E., Gvozdić, V., Herjavić, G., & Muharemović, H. (2013). Assessment of ozone variations and meteorological influences in a tourist and health resort area on the island of Mali Lošinj (Croatia). Environmental Science and Pollution Research, 20, 5106–5113.CrossRefGoogle Scholar
  22. Lao, L.-W. (2012). Effect of photochemical smog associated with synoptic weather patterns on cardiovascular and respiratory hospital admissions in metropolitan Taipei. International Journal of Environmental Health Research, 22(4), 287–304.CrossRefGoogle Scholar
  23. Lazutin, L., Bezerra, P. C., Fagnani, M. A., Pinto, H. S., Martin, I. M., da Silva, E. L. P., da Silva Mello, M. G., Turtelli, A., Zhavkov, V., & Zullo, J. (1996). Surface ozone study in Campinas, Sao Paulo, Brazil. Atmospheric Environment, 30, 2729–2738.CrossRefGoogle Scholar
  24. Lippmann, M. (1991). Health effects of tropospheric ozone. Environmental Science & Technology, 25, 1954–1962.CrossRefGoogle Scholar
  25. Matasović, B., Klasinc, L., & McGlynn, S. P. (2013). Analysis of ozone data by photochemical pollution indicators in Colorado. Croatica Chemica Acta, 86, 325–329.CrossRefGoogle Scholar
  26. Matasović, B., Herjavić, G., Klasinc, L., & Cvitaš, T. (2014). Analysis of ozone data from the Puntijarka station for the period between 1989 and 2009. Journal of Atmospheric Chemistry, 71, 269–282.CrossRefGoogle Scholar
  27. Nagase, H., Kinnisson, D. E., Petersen, A. K., Vitt, F., & Brasseur, G. P. (2015). Effects of injected ice particles in the lower stratosphere on the Antarctic ozone hole. Earth’s Future, 3, 143–158.CrossRefGoogle Scholar
  28. Nolle, M., Ellul, R., Heinrich, G., & Güsten, H. (2002). A long-term study of background ozone concentrations in the central Mediterranean—diurnal and seasonal variations on the island of Gozo. Atmospheric Environment, 36, 1391–1402.CrossRefGoogle Scholar
  29. Paoletti, E., de Marco, A., & Racalbuto, S. (2007). Why should we calculate complex indices of ozone exposure? Results from Mediterranean background sites. Environmental Monitoring and Assessment, 128, 19–30.CrossRefGoogle Scholar
  30. Pires, J. C., Souza, A., Pavão, H. G., & Martins, F. G. (2014). Variation of surface ozone in Campo Grande, Brazil: meteorological effect analysis and prediction. Environmental Science and Pollution Research, 21(17), 10550–10559.CrossRefGoogle Scholar
  31. Sánchez-Ccoyllo, O. R., Ynoue, R. Y., Martins, L. D., & Andrade, M. F. (2006). Impacts of ozone precursor limitation and meteorological variables on ozone concentration in São Paulo, Brazil. Atmospheric Environment, 40, S552–S562.CrossRefGoogle Scholar
  32. Sant’Anna Neto, J. L., & da Anunciação, V. S. (2001). Uma reflexão do espaço urbano da cidade de Campo Grande/MS na perspectiva climática. Revista Pantaneira, Aquidauana, 3, 55–66.Google Scholar
  33. Schwartz, J., & Dockery, D. W. (1992). Increased mortality in Philadelphia associated with daily air pollution concentrations. American Review of Respiratory Disease, 145, 600–604.CrossRefGoogle Scholar
  34. Souza, A., & Fernandes, W. A. (2014). Surface ozone measurements and meteorological influences in the urban atmosphere of Campo Grande, Mato Grosso do Sul State. Acta Scientiarum Technology Maringá, 36(1), 141–146.CrossRefGoogle Scholar
  35. Souza, A., Guo, Y., Pavão, H. G., & Fernandes, W. A. (2014). Effects of air pollution on disease respiratory: structures lag. Health, 6, 1333–1339.CrossRefGoogle Scholar
  36. Souza, A., Aristones, F., & Goncalves, F. V. (2015). Modeling of surface and weather effects ozone concentration using neural networks in West Center of Brazil. Journal of Climatology & Weather Forecasting, 3, 123.CrossRefGoogle Scholar
  37. Supping, Z., Guanglin, M., Yanwel, W., & Ji, L. (1992). Study of the relationship between weather conditions and marathon race, and of meteorotropic effects on distance runners. International Journal of Biometeorology, 36, 63–68.CrossRefGoogle Scholar
  38. Vingarzan, R. (2004). A review of surface ozone background levels and trends. Atmospheric Environment, 38, 3431–3442.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Amaury de Souza
    • 1
  • Elvira Kovač-Andrić
    • 2
    Email author
  • Brunislav Matasović
    • 2
  • Berislav Marković
    • 2
  1. 1.Federal University of Mato Grosso do Sul, Institute of PhysicsCampo GrandeBrazil
  2. 2.Department of ChemistryUniversity of Josip Juraj StrossmayerOsijekCroatia

Personalised recommendations