State of the Art of Phytoremediation in Brazil—Review and Perspectives

  • Cassiano A. R. Bernardino
  • Claudio F. Mahler
  • Karla H. Preussler
  • Luís A. B. NovoEmail author


The pollution of terrestrial and aquatic environments with heavy metals is a serious concern on a worldwide scale. Trace elements can be highly toxic and carcinogenic for human health while also detrimental to animal and plant life of ecosystems surrounding contamination hotspots. Phytoremediation is a low-cost and environment-friendly plant-based technique to alleviate polluted areas, which constitutes a viable alternative to other complex, costly, and often harmful traditional methods. Phytoremediation is particularly interesting for Brazil, given the country’s rich biodiversity and climate. This mini-review covers some of the most important results in phytoremediation studies carried out in Brazil to date, with a particular focus on the potential of the Brazilian flora for phytostabilization and phytoextraction, the two main subcategories of phytoremediation. Moreover, it includes data from two previously unpublished trials about phytoremediation of metal-polluted soil and water with vetiver grass and four wetland macrophytes (water hyacinth, creeping river grass, alligator weed, and water lettuce).


Phytoremediation Heavy metals Metal pollution Soil reclamation Water reclamation Metal hyperaccumulation 



The authors thank the funding agencies CNPq, CAPES, DAAD, and FAPERJ for the financial support and scholarships granted. Luís A. B. Novo acknowledges the support of the Portuguese Foundation for Science and Technology (FCT) under grant no. SFRH/BPD/103476/2014.


  1. Ali, H., Khan, E., & Sajad, M. A. (2013). Phytoremediation of heavy metals—concepts and applications. Chemosphere, 91(7), 869–881. doi: 10.1016/j.chemosphere.2013.01.075.CrossRefGoogle Scholar
  2. Alloway, B. (2013). Heavy Metals in Soils. (B. J. Alloway, Ed.) Heavy metals in soils (Vol. 22). Dordrecht: Springer Netherlands. doi: 10.1007/978-94-007-4470-7
  3. Andrade, J. C. da M., Tavares, S. R. de L., & Mahler, C. F. (2007). Fitorremediação: o uso de plantas na melhoria da qualidade ambiental. São Paulo: Oficina de Textos.Google Scholar
  4. Baker, A. J. M., & Brooks, R. R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery, 1(2), 81–126.
  5. Bech, J., Duran, P., Roca, N., Poma, W., Sánchez, I., Barceló, J., et al. (2012). Shoot accumulation of several trace elements in native plant species from contaminated soils in the Peruvian Andes. Journal of Geochemical Exploration, 113, 106–111. doi: 10.1016/j.gexplo.2011.04.007.CrossRefGoogle Scholar
  6. Bhargava, A., Carmona, F. F., Bhargava, M., & Srivastava, S. (2012). Approaches for enhanced phytoextraction of heavy metals. Journal of Environmental Management, 105, 103–120. doi: 10.1016/j.jenvman.2012.04.002.CrossRefGoogle Scholar
  7. Brooks, R. R. (1998). Plants that hyperaccumulate heavy metals. Wallingford: CAB Internacional.Google Scholar
  8. Buendía-González, L., Orozco-Villafuerte, J., Cruz-Sosa, F., Barrera-Díaz, C. E., & Vernon-Carter, E. J. (2010). Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant. Bioresource Technology, 101(15), 5862–5867. doi: 10.1016/j.biortech.2010.03.027.CrossRefGoogle Scholar
  9. CETESB. (2005). Valores orientadores para solo e água subterrânea no Estado de São Paulo. São Paulo.Google Scholar
  10. CETESB. (2013). Texto explicativo—relação de áreas contaminadas e reabilitadas no Estado de São Paulo. São Paulo.Google Scholar
  11. CETESB. (2014). Valores orientadores para solo e água subterrânea no estado de SP (Vol. 124). São Paulo.Google Scholar
  12. Chaves, L. H. G., Mesquita, E. F., Araujo, D. L., & França, C. P. (2010). Crescimento, distribuiçao e acúmulo de cobre e zinco em plantas de pinhão-manso. Revista Ciência Agronômica, 41(2), 167–176.CrossRefGoogle Scholar
  13. Chaves, L. H. G., & Souza, R. S. (2014). Crescimento, distribuição e acumulação de cádmio em plantas de Jatropha curcas. Revista de Ciências Agrárias, 37(3), 286–291.Google Scholar
  14. Chaves, T. A., & Andrade, A. G. (2013). Capim vetiver: produção de mudas e uso no controle da erosão e na recuperação de áreas degradadas. Rio de Janeiro.Google Scholar
  15. Chehregani, A., Noori, M., & Yazdi, H. L. (2009). Phytoremediation of heavy-metal-polluted soils: screening for new accumulator plants in Angouran mine (Iran) and evaluation of removal ability. Ecotoxicology and Environmental Safety, 72(5), 1349–1353. doi: 10.1016/j.ecoenv.2009.02.012.CrossRefGoogle Scholar
  16. Cohen, T., Hee, S. S. Q., & Ambrose, R. F. (2001). Trace metals in fish and invertebrates of three California Coastal Wetlands. Marine Pollution Bulletin, 42, 224–232. doi: 10.1016/S0025-326X(00)00146-6.CrossRefGoogle Scholar
  17. CONAMA. Resolução CONAMA No 420, de 28 de dezembro de 2009 (2009).Google Scholar
  18. CONAMA. Resolução CONAMA No 463, de 29 de julho de 2014. (2014).Google Scholar
  19. De Caires, S. M., Fontes, M. P. F., Fernandes, R. B. A., Neves, J. C. L., & Fontes, R. L. F. (2011). Desenvolvimento de mudas de cedro-rosa em solo contaminado com cobre: tolerância e potencial para fins de fitoestabilização do solo. Revista Árvore, 35(6), 1181–1188. doi: 10.1590/S0100-67622011000700004.Google Scholar
  20. De Morais, J. L., & Zamora, P. P. (2005). Use of advanced oxidation processes to improve the biodegradability of mature landfill leachates. Journal of Hazardous Materials, 123(1-3), 181–186.CrossRefGoogle Scholar
  21. Dickinson, N. M., Baker, A. J. M., Doronila, A., Laidlaw, S., & Reeves, R. D. (2009). Phytoremediation of inorganics: realism and synergies. International Journal of Phytoremediation, 11(2), 97–114. doi: 10.1080/15226510802378368.CrossRefGoogle Scholar
  22. Dinh, N. T., Vu, D. T., Mulligan, D., & Nguyen, A. V. (2015). Accumulation and distribution of zinc in the leaves and roots of the hyperaccumulator Noccaea caerulescens. Environmental and Experimental Botany, 110, 85–95. doi: 10.1016/j.envexpbot.2014.10.001.CrossRefGoogle Scholar
  23. Fumagalli, P., Comolli, R., Ferrè, C., Ghiani, A., Gentili, R., & Citterio, S. (2014). The rotation of white lupin (Lupinus albus L.) with metal-accumulating plant crops: a strategy to increase the benefits of soil phytoremediation. Journal of Environmental Management, 145, 35–42. doi: 10.1016/j.jenvman.2014.06.001.CrossRefGoogle Scholar
  24. Galal, T. M., & Shehata, H. S. (2015). Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecological Indicators, 48, 244–251. doi: 10.1016/j.ecolind.2014.08.013.CrossRefGoogle Scholar
  25. Giulietti, A. M., Harley, R. M., Queiroz, L. P., Wanderley, M. das G., & Berg, C. Van Den. (2005). Biodiversidade e conservação das plantas no Brasil. Megadiversidade, 1(1), 52–61.Google Scholar
  26. INEA. (2014). Gerenciamento de áreas contaminadas do estado do Rio de Janeiro. Rio de Janeiro.Google Scholar
  27. Karami, N., Clemente, R., Moreno-Jiménez, E., Lepp, N. W., & Beesley, L. (2011). Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. Journal of Hazardous Materials, 191(1-3), 41–8. doi: 10.1016/j.jhazmat.2011.04.025.CrossRefGoogle Scholar
  28. Khan, S., Cao, Q., Zheng, Y. M., Huang, Y. Z., & Zhu, Y. G. (2008). Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution, 152, 686–692. doi: 10.1016/j.envpol.2007.06.056.CrossRefGoogle Scholar
  29. Lee, S.-H., Ji, W., Lee, W.-S., Koo, N., Koh, I. H., Kim, M.-S., & Park, J.-S. (2014). Influence of amendments and aided phytostabilization on metal availability and mobility in Pb/Zn mine tailings. Journal of Environmental Management, 139, 15–21. doi: 10.1016/j.jenvman.2014.02.019.CrossRefGoogle Scholar
  30. Lee, S.-H., Kim, E. Y., Park, H., Yun, J., & Kim, J.-G. (2011). In situ stabilization of arsenic and metal-contaminated agricultural soil using industrial by-products. Geoderma, 161(1-2), 1–7. doi: 10.1016/j.geoderma.2010.11.008.CrossRefGoogle Scholar
  31. Leung, H. M., Wang, Z. W., Ye, Z. H., Yung, K. L., Peng, X. L., & Cheung, K. C. (2013). Interactions between arbuscular mycorrhizae and plants in phytoremediation of metal-contaminated soils: a review. Pedosphere, 23, 549–563. doi: 10.1016/S1002-0160(13)60049-1.CrossRefGoogle Scholar
  32. Li, Z., Wu, L., Hu, P., Luo, Y., Zhang, H., & Christie, P. (2014). Repeated phytoextraction of four metal-contaminated soils using the cadmium/zinc hyperaccumulator Sedum plumbizincicola. Environmental pollution (Barking, Essex : 1987), 189, 176–183. doi: 10.1016/j.envpol.2014.02.034.CrossRefGoogle Scholar
  33. Lin, C., Liu, J., Liu, L., Zhu, T., Sheng, L., & Wang, D. (2009). Soil amendment application frequency contributes to phytoextraction of lead by sunflower at different nutrient levels. Environmental and Experimental Botany, 65(2-3), 410–416. doi: 10.1016/j.envexpbot.2008.12.003.CrossRefGoogle Scholar
  34. Lotfy, S. M., & Mostafa, a. Z. (2014). Phytoremediation of contaminated soil with cobalt and chromium. Journal of Geochemical Exploration, 144, 367–373. doi: 10.1016/j.gexplo.2013.07.003.CrossRefGoogle Scholar
  35. Magalhães, M. O. L., do A Sobrinho, N. M. B., Santos, F. S., & Mazur, N. (2011). Potencial de duas espécies de eucalipto na fitoestabilização de solo contaminado com zinco. Revista Ciência Agronômica, 42(3), 805–812.CrossRefGoogle Scholar
  36. Marques, A. P. G. C., Rangel, A. O. S. S., & Castro, P. M. L. (2009). Remediation of heavy metal contaminated soils: phytoremediation as a potentially promising clean-up technology. Critical Reviews in Environmental Science and Technology, 39(8), 622–654. doi: 10.1080/10643380701798272.CrossRefGoogle Scholar
  37. Marques, M., Aguiar, C. R. C., & da Silva, J. J. L. S. (2011). Technical challenges and social, economic and regulatory barriers to phytoremediation of contaminated soils. Revista Brasileira de Ciência do Solo, 35(1), 1–11. doi: 10.1590/S0100-06832011000100001.CrossRefGoogle Scholar
  38. Melgar-Ramírez, R., González, V., Sánchez, J. A., & García, I. (2012). Effects of application of organic and inorganic wastes for restoration of sulphur-mine soil. Water, Air, & Soil Pollution, 223(9), 6123–6131. doi: 10.1007/s11270-012-1345-8.CrossRefGoogle Scholar
  39. Mench, M. J., Manceau, A., Vangronsveld, J., Clijsters, H., & Mocquot, B. (2000). Capacity of soil amendments in lowering the phytoavailability of sludge-borne zinc. Agronomie, 20(4), 383–397. doi: 10.1051/agro:2000135.CrossRefGoogle Scholar
  40. Mendes, P. L. A., Meyer, S. T., Noronha, I. A. S., Gomes, S. M. A., & Santos, M. H. (2009). Alteraçoes morfológicas em Eichhornia crassipes (aguapé) (Mart.) Solms-Laubach (Pontederiaceae), exposta a elevadas concentrações de mercúrio. Pesticidas: Revista de Ecotoxicologia e Meio Ambiente, 19, 29–38.Google Scholar
  41. Mendez, M. O., & Maier, R. M. (2008). Phytostabilization of mine tailings in arid and semiarid environments—an emerging remediation technology. Environmental Health Perspectives, 116(3), 278–283.
  42. Mulligan, C. N., Yong, R. N., & Gibbs, B. F. (2001). Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Engineering Geology, 60(1-4), 193–207. doi: 10.1016/S0013-7952(00)00101-0.CrossRefGoogle Scholar
  43. Nagajyoti, P. C., Sreekanth, T. V. M., & Lee, K. D. (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters, 8(3), 199–216. doi: 10.1007/s10311-010-0297-8.CrossRefGoogle Scholar
  44. Nanda Kumar, P. B. A., Dushenkov, V., Motto, H., & Raskin, I. (1995). Phytoextraction: the use of plants to remove heavy metals from soils. Environmental Science & Technology, 29(5), 1232–1238.CrossRefGoogle Scholar
  45. Naseem, S., Bashir, E., Shireen, K., & Shafiq, S. (2009). Soil-plant relationship of Pteropyrum olivieri, a serpentine flora of Wadh, Balochistan, Pakistan and its use in mineral prospecting. Studia Universitatis Babes-Bolyai, Geologia, 54(2), 33–39. doi: 10.5038/1937-8602.54.2.7.CrossRefGoogle Scholar
  46. Nordberg, G., Fowler, B. A., Nordberg, M., & Friberg, L. (2009). Handbook on the toxicology of metals. (G. F. Nordberg, B. A. Fowler, M. Nordberg, & L. T. Friberg, Eds.) (Third.). London: Academic Press.Google Scholar
  47. Novo, L. A. B., Covelo, E. F., & González, L. (2013a). Phytoremediation of amended copper mine tailings with Brassica juncea. International Journal of Mining, Reclamation and Environment, 27(April), 215–226. doi: 10.1080/17480930.2013.779061.CrossRefGoogle Scholar
  48. Novo, L. A. B., Covelo, E. F., & González, L. (2013b). The potential of Salvia verbenaca for phytoremediation of copper mine tailings amended with technosol and compost. Water, Air, & Soil Pollution, 224(4), 1513. doi: 10.1007/s11270-013-1513-5.CrossRefGoogle Scholar
  49. Novo, L. A. B., Mahler, C. F., & González, L. (2015). Plants to harvest rhenium: scientific and economic viability. Environmental Chemistry Letters, 13(4), 439–445. doi: 10.1007/s10311-015-0517-3.CrossRefGoogle Scholar
  50. Oliveira, J. A. De, Cambraia, J., Cano, M. A. O., & Jordão, C. P. (2001). Absorção e acúmulo de cádmio e seus efeitos sobre o crescimento relativo de plantas de aguapé e de salvínia. Revista Brasileira de Fisiologia Vegetal, 13(3). doi: 10.1590/S0103-31312001000300008.
  51. Padmavathiamma, P. K., & Li, L. Y. (2007). Phytoremediation technology: hyper-accumulation metals in plants. Water, Air, and Soil Pollution, 184(1-4), 105–126. doi: 10.1007/s11270-007-9401-5.CrossRefGoogle Scholar
  52. Park, J. H., Lamb, D., Paneerselvam, P., Choppala, G., Bolan, N., & Chung, J.-W. (2011). Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. Journal of Hazardous Materials, 185(2-3), 549–574. doi: 10.1016/j.jhazmat.2010.09.082.CrossRefGoogle Scholar
  53. Pavel, P.-B., Puschenreiter, M., Wenzel, W. W., Diacu, E., & Barbu, C. H. (2014). Aided phytostabilization using Miscanthus sinensis × giganteus on heavy metal-contaminated soils. The Science of the Total Environment, 479–480, 125–131. doi: 10.1016/j.scitotenv.2014.01.097.CrossRefGoogle Scholar
  54. Pedro, C. a., Santos, M. S. S., Ferreira, S. M. F., & Gonçalves, S. C. (2013). The influence of cadmium contamination and salinity on the survival, growth and phytoremediation capacity of the saltmarsh plant Salicornia ramosissima. Marine Environmental Research, 92, 197–205. doi: 10.1016/j.marenvres.2013.09.018.CrossRefGoogle Scholar
  55. Peijnenburg, W. J. G., & Jager, T. (2003). Monitoring approaches to assess bioaccessibility and bioavailability of metals: matrix issues. Ecotoxicology and Environmental Safety, 56(1), 63–77.CrossRefGoogle Scholar
  56. Pereira, K. de L., Pinto, L. V. A., & Ademir, J. P. (2013). Potencial fitorremediador das plantas predominantes na área do lixão de Inconfidentes / MG. Revista Agrogeoambiental, 1, 25–29.Google Scholar
  57. Pérez-Esteban, J., Escolástico, C., Moliner, A., Masaguer, A., & Ruiz-Fernández, J. (2013). Phytostabilization of metals in mine soils using Brassica juncea in combination with organic amendments. Plant and Soil, 377(1-2), 97–109. doi: 10.1007/s11104-013-1629-9.CrossRefGoogle Scholar
  58. Pirzadah, T. B., Malik, B., Inayatullah, T., Kumar, M., Varma, A., & Reiaz, R. U. I. (2015). Phytoremediation: an eco-friendly green technology for pollution prevention, control and remediation. In K. R. Hakeem, M. Sabir, M. Öztürk, & A. R. Mermut (Eds.), Soil remediation and plants: prospects and challenges (pp. 107–129). New York: Elsevier. doi: 10.1016/B978-0-12-799937-1.01001-9.CrossRefGoogle Scholar
  59. Pivetz, B. (2001). Phytoremediation of contaminated soil and ground water at hazardous waste sites. EPA Ground Water Issue, 1–36.Google Scholar
  60. Pollard, A. J., Reeves, R. D., & Baker, A. J. M. (2014). Facultative hyperaccumulation of heavy metals and metalloids. Plant Science, 217–218, 8–17. doi: 10.1016/j.plantsci.2013.11.011.CrossRefGoogle Scholar
  61. Prasad, M. N. V., Sajwan, K. S., & Naidu, R. (2006). Trace elements in the environment: biogeochemistry, biotechnology, and bioremediation. Boca Raton: CRC Press.Google Scholar
  62. Preussler, K. H. (2014). Evaluation of a wetland system in the treatment of landfill leachate. UFRJ/COPPE.Google Scholar
  63. Preussler, K. H., Mahler, C. F., & Maranho, L. T. (2015). Performance of a system of natural wetlands in leachate of a posttreatment landfill. International Journal of Environmental Science and Technology, 12(8), 2623–2638. doi: 10.1007/s13762-014-0674-0.CrossRefGoogle Scholar
  64. Rascio, N., & Navari-Izzo, F. (2011). Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Science, 180(2), 169–81. doi: 10.1016/j.plantsci.2010.08.016.CrossRefGoogle Scholar
  65. Raskin, I., & Ensley, B. D. (2000). Phytoremediation of toxic metals: using plants to clean up the environment. New York: Wiley-Interscience.Google Scholar
  66. Reeves, R. D., & Baker, A. J. M. (2000). Metal-accumulation plants. In I. Raskin & B. D. Ensllet (Eds.), Phytoremediation of toxic metals: using plants to clean up the environment (pp. 193–230). New York: John Wiley and Sons.Google Scholar
  67. Roccotiello, E., Serrano, H. C., Mariotti, M. G., & Branquinho, C. (2014). Nickel phytoremediation potential of the Mediterranean Alyssoides utriculata (L.) Medik. Chemosphere. doi: 10.1016/j.chemosphere.2014.02.031.Google Scholar
  68. Romeiro, S., Lagôa, A. M. M. A., Furlani, P. R., Abreu, C. A., & Pereira, B. F. F. (2007). Absorção de chumbo e potencial de fitorremediação de Canavalia ensiformes L. Bragantia, 66(2), 327–334. doi: 10.1590/S0006-87052007000200017.CrossRefGoogle Scholar
  69. Santos, C. F., & Novak, E. (2013). Plantas nativas do cerrado e possibilidades em fitorremediação. Revista de Ciências Ambientais, 7(1), 67–78.Google Scholar
  70. Santos, C. H., Garcia, A. luis de O., Calonego, J. C., Sérgio, T. C., Rigolin, I. M., & Spósito, T. H. N. (2012). Utilização da mucuna preta (Mucuna aterrima Piper & Tracy) para a fitorremediação de solo contaminado por chumbo. Revista Agro@ambiente On-line, 6(3), 215–221.Google Scholar
  71. Saturnino, H. M., Pacheco, D. D., Kakida, J., Tominaga, N., & Gonçalves, N. P. (2005). Cultura do pinhao-manso (Jatropha curca L.). Informe Agropecuário, 26(229), 44–78.Google Scholar
  72. Seth, C. S., Remans, T., Keunen, E., Jozefczak, M., Gielen, H., Opdenakker, K., et al. (2012). Phytoextraction of toxic metals: a central role for glutathione. Plant, Cell & Environment, 35(2), 334–346. doi: 10.1111/j.1365-3040.2011.02338.x.CrossRefGoogle Scholar
  73. Sheoran, V., Sheoran, A. S., & Poonia, P. (2009). Phytomining: A review. Minerals Engineering, 22(12), 1007–1019. doi: 10.1016/j.mineng.2009.04.001.CrossRefGoogle Scholar
  74. Silva, P. C. C., Jesus, F. N., Alves, A. C., De Jesus, C. A. S., & Santos, A. R. (2013). Crescimento de plantas de girassol cultivadas em ambiente contaminado por chumbo. Bioscience Journal, 29, 1576–1586.Google Scholar
  75. Sirguey, C., & Ouvrard, S. (2013). Contaminated soils salinity, a threat for phytoextraction? Chemosphere, 91(3), 269–274. doi: 10.1016/j.chemosphere.2012.11.024.CrossRefGoogle Scholar
  76. Sun, Y., Zhou, Q., & Diao, C. (2008). Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L. Bioresource Technology, 99(5), 1103–10. doi: 10.1016/j.biortech.2007.02.035.CrossRefGoogle Scholar
  77. Tavares, S. R. de L. (2009). Phytoremediation of metal polluted soils and waters. UFRJ/COPPE.Google Scholar
  78. Tavares, S. R. L., Oliveira, S. A., & Salgado, C. M. (2013). Avaliação de espécies vegetais na fitorremediação de solos contaminados por metais pesados. HOLOS, 5, 80–97.CrossRefGoogle Scholar
  79. Vamerali, T., Bandiera, M., & Mosca, G. (2009). Field crops for phytoremediation of metal-contaminated land. A review. Environmental Chemistry Letters, 8(1), 1–17. doi: 10.1007/s10311-009-0268-0.CrossRefGoogle Scholar
  80. van der Ent, A., Baker, A. J. M., Reeves, R. D., Pollard, A. J., & Schat, H. (2013). Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant and Soil, 362(1-2), 319–334. doi: 10.1007/s11104-012-1287-3.CrossRefGoogle Scholar
  81. Van Nevel, L., Mertens, J., Oorts, K., & Verheyen, K. (2007). Phytoextraction of metals from soils: how far from practice? Environmental Pollution, 150(1), 34–40. doi: 10.1016/j.envpol.2007.05.024.CrossRefGoogle Scholar
  82. Vangronsveld, J., Herzig, R., Weyens, N., Boulet, J., Adriaensen, K., Ruttens, A., et al. (2009). Phytoremediation of contaminated soils and groundwater: lessons from the field. Environmental Science and Pollution Research, 16(7), 765–794. doi: 10.1007/s11356-009-0213-6.CrossRefGoogle Scholar
  83. Verbruggen, N., Hermans, C., & Schat, H. (2009). Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist, 181(4), 759–776. doi: 10.1111/j.1469-8137.2008.02748.x.CrossRefGoogle Scholar
  84. Wei, S., Zhou, Q., & Wang, X. (2005). Identification of weed plants excluding the uptake of heavy metals. Environment International, 31, 829–834. doi: 10.1016/j.envint.2005.05.045.CrossRefGoogle Scholar
  85. Wolff, G., Assis, L. R., Pereira, G. C., Carvalho, J. G., & Castro, E. M. (2009). Efeitos da toxicidade do zinco em folhas de Salvinia auriculata cultivadas em solução nutritiva. Planta Daninha, 27(1), 133–137. doi: 10.1590/S0100-83582009000100017.CrossRefGoogle Scholar
  86. Wu, G., Kang, H., Zhang, X., Shao, H., Chu, L., & Ruan, C. (2010). A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. Journal of Hazardous Materials, 174(1-3), 1–8. doi: 10.1016/j.jhazmat.2009.09.113.CrossRefGoogle Scholar
  87. Yang, S., Liang, S., Yi, L., Xu, B., Cao, J., Guo, Y., & Zhou, Y. (2013). Heavy metal accumulation and phytostabilization potential of dominant plant species growing on manganese mine tailings. Frontiers of Environmental Science & Engineering, 8(3), 394–404. doi: 10.1007/s11783-013-0602-4.CrossRefGoogle Scholar
  88. Zhang, S., Lin, H., Deng, L., Gong, G., Jia, Y., Xu, X., et al. (2013). Cadmium tolerance and accumulation characteristics of Siegesbeckia orientalis L. Ecological Engineering, 51, 133–139. doi: 10.1016/j.ecoleng.2012.12.080.CrossRefGoogle Scholar
  89. Zhao, G. Q., Ma, B. L., & Ren, C. Z. (2007). Growth, gas exchange, chlorophyll fluorescence, and ion content of naked oat in response to salinity. Crop Science, 47(1), 123–131. doi: 10.2135/cropsci2006.06.0371.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Cassiano A. R. Bernardino
    • 1
  • Claudio F. Mahler
    • 1
  • Karla H. Preussler
    • 2
  • Luís A. B. Novo
    • 3
    Email author
  1. 1.Department of Civil EngineeringFederal University of Rio de JaneiroRio de JaneiroBrazil
  2. 2.Graduate Program in Environmental ManagementPositivo UniversityCuritibaBrazil
  3. 3.GeoBioTec Research Center, Department of GeosciencesUniversity of AveiroAveiroPortugal

Personalised recommendations