Advertisement

Water, Air, & Soil Pollution

, 227:296 | Cite as

A Review and Evaluation of the Impacts of Climate Change on Geogenic Arsenic in Groundwater from Fractured Bedrock Aquifers

  • Raphaël Bondu
  • Vincent Cloutier
  • Eric Rosa
  • Mostafa Benzaazoua
Article

Abstract

Climate change is expected to affect the groundwater quality by altering recharge, water table elevation, groundwater flow, and land use. In fractured bedrock aquifers, the quality of groundwater is a sensitive issue, particularly in areas affected by geogenic arsenic contamination. Understanding how climate change will affect the geochemistry of naturally occurring arsenic in groundwater is crucial to ensure sustainable use of this resource, particularly as a source of drinking water. This paper presents a review of the potential impacts of climate change on arsenic concentration in bedrock aquifers and identifies issues that remain unresolved. During intense and prolonged low flow, the decline in the water table is expected to increase the oxidation of arsenic-bearing sulfides in the unsaturated zone. In addition, reduced groundwater flow may increase the occurrence of geochemically evolved arsenic-rich groundwater and enhance arsenic mobilization by reductive dissolution and alkali desorption. In contrast, the occurrence of extreme recharge events is expected to further decrease arsenic concentrations because of the greater dilution by oxygenated, low-pH water. In some cases, arsenic mobilization could be indirectly induced by climate change through changes in land use, particularly those causing increased groundwater withdrawals and pollution. The overall impact of climate change on dissolved arsenic will vary greatly according to the bedrock aquifer properties that influence the sensitivity of the groundwater system to climate change. To date, the scarcity of data related to the temporal variability of arsenic in fractured bedrock groundwater is a major obstacle in evaluating the future evolution of the resource quality.

Keywords

Arsenic mobilization Climate change Fractured bedrock aquifers Groundwater quality Sulfide oxidation Temporal variability 

Notes

Acknowledgments

This project was funded by the Quebec Ministry of the Environment (Ministère du Développement durable, de l’Environnement et de la Lutte contre les changements climatiques) through the Groundwater Knowledge Acquisition Program (PACES) with significant contributions from regional partners involved in the PACES, including the Regional County Municipalities (Abitibi, Vallée-de-l’Or, Abitibi-Ouest, Ville de Rouyn-Noranda, Témiscamingue) and the Regional Conference of Elected Officials of Abitibi-Temiscamingue. The authors acknowledge the Foundation of the University of Quebec in Abitibi-Temiscamingue (FUQAT) and the Canadian Institute of Mining (Amos section) for scholarships and support to the project of Raphaël Bondu, respectively. Finally, the authors would like to acknowledge two anonymous reviewers for their constructive comments which contributed to improve this article.

References

  1. Acharyya, S. K., Shah, B. A., Ashyiya, I. D., & Pandey, Y. (2005). Arsenic contamination in groundwater from parts of Ambagarh-Chowki block, Chhattisgarh, India: source and release mechanism. Environmental Geology, 49, 148–158.CrossRefGoogle Scholar
  2. Ahn, J. S. (2012). Geochemical occurrences of arsenic and fluoride in bedrock groundwater: a case study in Geumsan County, Korea. Environmental Geochemistry and Health, 34, 43–54.CrossRefGoogle Scholar
  3. Ahn, J. S., & Cho, Y.-C. (2013). Predicting natural arsenic contamination of bedrock groundwater for a local region in Korea and its application. Environmental earth sciences, 68, 2123–2132.CrossRefGoogle Scholar
  4. Appelo, C. A. J., & Postma, D. (2005). Geochemistry, groundwater and pollution. A.A. Balkema Publishers.Google Scholar
  5. Asta, M. P., Cama, J., Ayora, C., Acero, P., & de Giudici, G. (2010). Arsenopyrite dissolution rates in O2-bearing solutions. Chemical Geology, 273, 272–285.CrossRefGoogle Scholar
  6. Ayotte, J. D., Belaval, M., Olson, S. A., Burow, K. R., Flanagan, S. M., Hinkle, S. R., & Lindsey, B. D. (2015). Factors affecting temporal variability of arsenic in groundwater used for drinking water supply in the United States. Science of the Total Environment, 505, 1370–1379.CrossRefGoogle Scholar
  7. Ayotte, J. D., Montgomery, D. L., Flanagan, S. M., & Robinson, K. W. (2003). Arsenic in groundwater in eastern New England: occurrence, controls, and human health implications. Environmental science & technology, 37, 2075–2083.CrossRefGoogle Scholar
  8. Bhattacharya, P., Jacks, G., & von Brömssen, M. (2010). Arsenic in Swedish groundwater—mobility and risk for naturally elevated concentrations: final report, Universitetsservice AB.Google Scholar
  9. Bhattacharya, P., Sracek, O., Eldvall, B., Asklund, R., Barmen, G., Jacks, G., Koku, J., Gustafsson, J.-E., Singh, N., & Balfors, B. B. (2012). Hydrogeochemical study on the contamination of water resources in a part of Tarkwa mining area, Western Ghana. Journal of African Earth Sciences, 66–67, 72–84.CrossRefGoogle Scholar
  10. Bloomfield, J. P., Williams, R. J., Gooddy, D. C., Cape, J. N., & Guha, P. (2006). Impacts of climate change on the fate and behaviour of pesticides in surface and groundwater—a UK perspective. Science of the Total Environment, 369, 163–177.CrossRefGoogle Scholar
  11. Borba, R. P., Figueiredo, B. R., & Matschullat, J. (2003). Geochemical distribution of arsenic in waters, sediments and weathered gold mineralized rocks from Iron Quadrangle, Brazil. Environmental Geology, 44, 39–52.Google Scholar
  12. Bottomley, D. (1984). Origins of some arseniferous groundwaters in Nova Scotia and New Brunswick, Canada. Journal of Hydrology, 69, 223–257.CrossRefGoogle Scholar
  13. Boyle, D. R., Turner, R. J. W., & Hall, G. E. M. (1998). Anomalous arsenic concentrations in groundwaters of an island community, Bowen Island, British Columbia. Environmental Geochemistry and Health, 20, 199–212.CrossRefGoogle Scholar
  14. Bretzler, A., & Johnson, C. A. (2015). The geogenic contamination handbook: addressing arsenic and fluoride in drinking water. Applied Geochemistry, 63, 642–646.CrossRefGoogle Scholar
  15. Carneiro, J. F., Boughriba, M., Correia, A., Zarhloule, Y., Rimi, A., & El Houadi, B. (2010). Evaluation of climate change effects in a coastal aquifer in Morocco using a density-dependent numerical model. Environmental Earth Sciences, 61, 241–252.CrossRefGoogle Scholar
  16. Chopard, A., Benzaazoua, M., Plante, B., Bouzahzah, H., & Marion, P. (2015). Kinetic tests to evaluate the relative oxidation rates of various sulfides and sulfosalts. Santiago: ICARD2015 Proceedings.Google Scholar
  17. Dams, J., Salvadore, E., Van Daele, T., Ntegeka, V., Willems, P., & Batelaan, O. (2012). Spatio-temporal impact of climate change on the groundwater system. Hydrology and Earth System Sciences, 16, 1517–1531.CrossRefGoogle Scholar
  18. Drahota, P., & Filippi, M. (2009). Secondary arsenic minerals in the environment: a review. Environment International, 35, 1243–1255.CrossRefGoogle Scholar
  19. Figura, S., Livingstone, D. M., Hoehn, E., & Kipfer, R. (2011). Regime shift in groundwater temperature triggered by the Arctic Oscillation. Geophysical Research Letters, 38, L23401.CrossRefGoogle Scholar
  20. Foley, N. K., & Ayuso, R. A. (2008). Mineral sources and transport pathways for arsenic release in a coastal watershed, USA. Geochemistry-exploration Environment Analysis, 8, 59–75.CrossRefGoogle Scholar
  21. Frengstad, B., Skrede, A. K. M., Banks, D., Krog, J. R., & Siewers, U. (2000). The chemistry of Norwegian groundwaters: III. The distribution of trace elements in 476 crystalline bedrock groundwaters, as analysed by ICP-MS techniques. Science of The Total Environment, 246(1), 21–40.CrossRefGoogle Scholar
  22. Frost, F., Franke, D., Pierson, K., Woodruff, L., Raasina, B., Davis, R., & Davies, J. (1993). A seasonal study of arsenic in groundwater, Snohomish County, Washington, USA. Environmental geochemistry and health, 15, 209–214.CrossRefGoogle Scholar
  23. Grantham, D. A., & Jones, J. F. (1977). Arsenic contamination of water wells in Nova Scotia. American Water Works Association Journal, 69(12), 653–657.Google Scholar
  24. Green, T. R., Taniguchi, M., Kooi, H., Gurdak, J. J., Allen, D. M., Hiscock, K. M., Treidel, H., & Aureli, A. (2011). Beneath the surface of global change: impacts of climate change on groundwater. Journal of Hydrology, 405, 532–560.CrossRefGoogle Scholar
  25. Gurdak, J. J., McMahon, P. B., & Bruce, B. W. (2012). Vulnerability of groundwater quality to human activity and climate change and variability, High Plains aquifer, USA. In H. Treidel, J. L. Martin-Bordes, & J. J. Gurdak (Eds.), Climate change effects on groundwater resources—a global synthesis of findings and recommendations, Taylor & Francis Group (pp. 145–168).Google Scholar
  26. Harte, P. T., Ayotte, J. D., Hoffman, A., Revesz, K. M., Belaval, M., Lamb, S., & Boehlke, J. K. (2012). Heterogeneous redox conditions, arsenic mobility, and groundwater flow in a fractured-rock aquifer near a waste repository site in New Hampshire, USA. Hydrogeology Journal, 20, 1189–1201.CrossRefGoogle Scholar
  27. IPCC. (2013). Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)], Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  28. Jackson, C. R., Meister, R., & Prudhomme, C. (2011). Modelling the effects of climate change and its uncertainty on UK Chalk groundwater resources from an ensemble of global climate model projections. Journal of Hydrology, 399, 12–28.CrossRefGoogle Scholar
  29. Jyrkama, M. I., & Sykes, J. F. (2007). The impact of climate change on spatially varying groundwater recharge in the grand river watershed (Ontario). Journal of Hydrology, 338(3), 237–250.CrossRefGoogle Scholar
  30. Kim, K., Kim, S.-H., Jeong, G. Y., & Kim, R.-H. (2012). Relations of As concentrations among groundwater, soil, and bedrock in Chungnam, Korea: implications for As mobilization in groundwater according to the As-hosting mineral change. Journal of Hazardous Materials, 199, 25–35.CrossRefGoogle Scholar
  31. Klassen, R. A., Douma, S. L., Ford, A., Rencz, A., & Grunsky, E. (2009). Geoscience modelling of relative variation in natural arsenic hazard potential in New Brunswick: Geological Survey of Canada, Current Research 2009–7, p. 9 p.CrossRefGoogle Scholar
  32. Kløve, B., Ala-Aho, P., Bertrand, G., Gurdak, J. J., Kupfersberger, H., Kvaerner, J., Muotka, T., Mykrä, H., Preda, E., Rossi, P., et al. (2014). Climate change impacts on groundwater and dependent ecosystems. Journal of Hydrology, 518, 250–266.CrossRefGoogle Scholar
  33. Kundzewicz, Z. W., & Döll, P. (2009). Will groundwater ease freshwater stress under climate change? Hydrological Sciences Journal, 54, 665–675.CrossRefGoogle Scholar
  34. Kurylyk, B., Bourque, C.-A., & MacQuarrie, K. (2013). Potential surface temperature and shallow groundwater temperature response to climate change: an example from a small forested catchment in east-central New Brunswick (Canada). Hydrology and Earth System Sciences, 17, 2701–2716.CrossRefGoogle Scholar
  35. Lerner, D. N., & Harris, B. (2009). The relationship between land use and groundwater resources and quality. Land Use Policy, 26(Supplement 1), S265–S273.CrossRefGoogle Scholar
  36. Lipfert, G., Reeve, A. S., Sidle, W. C., & Marvinney, R. (2006). Geochemical patterns of arsenic-enriched ground water in fractured, crystalline bedrock, Northport, Maine, USA. Applied Geochemistry, 21, 528–545.CrossRefGoogle Scholar
  37. Lipfert, G., Sidle, W. C., Reeve, A. S., Ayuso, R. A., & Boyce, A. J. (2007). High arsenic concentrations and enriched sulfur and oxygen isotopes in a fractured-bedrock ground-water system. Chemical Geology, 242, 385–399.CrossRefGoogle Scholar
  38. Loukola-Ruskeeniemi, K., Tanskanen, H., & Lahermo, P. (1999). Anomalously high arsenic concentrations in spring waters in Kittilä, Finnish Lapland. Geological Survey of Finland, Special Paper 27, 97–102.Google Scholar
  39. Mango, H., & Ryan, P. (2015). Source of arsenic-bearing pyrite in southwestern Vermont, USA: sulfur isotope evidence. Science of The Total Environment, 505, 1331–1339.CrossRefGoogle Scholar
  40. Manning, A. H., Verplanck, P. L., Caine, J. S., & Todd, A. S. (2013). Links between climate change, water-table depth, and water chemistry in a mineralized mountain watershed. Applied Geochemistry, 37, 64–78.CrossRefGoogle Scholar
  41. Mast, M. A., Turk, J. T., Clow, D. W., & Campbell, D. H. (2011). Response of lake chemistry to changes in atmospheric deposition and climate in three high-elevation wilderness areas of Colorado. Biogeochemistry, 103, 27–43.CrossRefGoogle Scholar
  42. Meranger, J., Subramanian, K., & McCurdy, R. (1984). Arsenic in Nova Scotian groundwater. Science of the total environment, 39, 49–55.CrossRefGoogle Scholar
  43. Naujokas, M. F., Anderson, B., Ahsan, H., Aposhian, H. V., Graziano, J. H., Thompson, C., & Suk, W. A. (2013). The broad scope of health effects from chronic arsenic exposure: update on a worldwide public health problem. Environmental Health Perspectives, 121, 295–302.CrossRefGoogle Scholar
  44. Niu, B., Loaiciga, H. A., Wang, Z., Zhan, F. B., & Hong, S. (2014). Twenty years of global groundwater research: a Science Citation Index Expanded-based bibliometric survey (1993–2012). Journal of Hydrology, 519, Part A, 966–975.CrossRefGoogle Scholar
  45. Nordstrom, D. K. (2009). Acid rock drainage and climate change. Journal of Geochemical Exploration, 100, 97–104.CrossRefGoogle Scholar
  46. Nordstrom, D. K., Blowes, D. W., & Ptacek, C. J. (2015). Hydrogeochemistry and microbiology of mine drainage: an update. Applied Geochemistry, 57, 3–16.CrossRefGoogle Scholar
  47. O’Shea, B., Stransky, M., Leitheiser, S., Brock, P., Marvinney, R. G., & Zheng, Y. (2015). Heterogeneous arsenic enrichment in meta-sedimentary rocks in central Maine, United States. Science of The Total Environment, 505, 1308–1319.CrossRefGoogle Scholar
  48. Okkonen, J., Jyrkama, M., & Kløve, B. (2010). A conceptual approach for assessing the impact of climate change on groundwater and related surface waters in cold regions (Finland). Hydrogeology Journal, 18(2), 429–439.CrossRefGoogle Scholar
  49. Pandey, P. K., Sharma, R., Roy, M., Roy, S., & Pandey, M. (2006). Arsenic contamination in the Kanker district of central-east India: geology and health effects. Environmental Geochemistry and Health, 28, 409–420.CrossRefGoogle Scholar
  50. Parviainen, A., Loukola-Ruskeeniemi, K., Tarvainen, T., Hatakka, T., Härmä, P., Backman, B., Ketola, T., Kuula, P., Lehtinen, H., Sorvari, J., Pyy, O., Ruskeeniemi, T., & Luoma, S. (2015). Arsenic in bedrock, soil and groundwater—the first arsenic guidelines for aggregate production established in Finland. Earth-Science Reviews, 150, 709–723.CrossRefGoogle Scholar
  51. Pearce, T. D., Ford, J. D., Prno, J., Duerden, F., Pittman, J., Beaumier, M., Berrang-Ford, L., & Smit, B. (2011). Climate change and mining in Canada. Mitigation and Adaptation Strategies For Global Change, 16, 347–368.CrossRefGoogle Scholar
  52. Peters, S. C. (2008). Arsenic in groundwaters in the Northern Appalachian Mountain belt: a review of patterns and processes. Journal of Contaminant Hydrology, 99, 8–21.CrossRefGoogle Scholar
  53. Peters, S. C., & Blum, J. D. (2003). The source and transport of arsenic in a bedrock aquifer, New Hampshire, USA. Applied Geochemistry, 18, 1773–1787.CrossRefGoogle Scholar
  54. Pili, E., Tisserand, D., & Bureau, S. (2013). Origin, mobility, and temporal evolution of arsenic from a low-contamination catchment in Alpine crystalline rocks. Journal of Hazardous Materials, 262, 887–895.CrossRefGoogle Scholar
  55. Ravenscroft, P., Brammer, H., & Richards, K. (2009). Arsenic pollution: a global synthesis, Wiley-Blackwell.CrossRefGoogle Scholar
  56. Reyes, F. A. P., Crosta, G. B., Frattini, P., Basirico, S., & Della Pergola, R. (2015). Hydrogeochemical overview and natural arsenic occurrence in groundwater from alpine springs (upper Valtellina, Northern Italy). Journal of Hydrology, 529, 1530–1549.CrossRefGoogle Scholar
  57. Ruskeeniemi, T., Backman, B., Loukola-Ruskeeniemi, K., Sorvari, J., Lehtinen, H., Schultz, E., Mäkelä-Kurtto, R., Rossi, E., Vaajasaari, K., & Bilaletdin, A. (2011). Arsenic in the Pirkanmaa region, Southern Finland: from identification through to risk assessment to risk management. Geological Survey of Finland, Special Paper 49, 21–227.Google Scholar
  58. Ryan, P. C., Kim, J., Wall, A. J., Moen, J. C., Corenthal, L. G., Chow, D. R., Sullivan, C. M., & Bright, K. S. (2011). Ultramafic-derived arsenic in a fractured bedrock aquifer. Applied Geochemistry, 26, 444–457.CrossRefGoogle Scholar
  59. Ryan, P. C., Kim, J. J., Mango, H., Hattori, K., & Thompson, A. (2013). Arsenic in a fractured slate aquifer system, New England, USA: influence of bedrock geochemistry, groundwater flow paths, redox and ion exchange. Applied Geochemistry, 39, 181–192.CrossRefGoogle Scholar
  60. Ryan, P. C., West, D. P., Hattori, K., Studwell, S., Allen, D. N., & Kim, J. (2015). The influence of metamorphic grade on arsenic in metasedimentary bedrock aquifers: a case study from Western New England, USA. Science of the Total Environment, 505, 1320–1330.CrossRefGoogle Scholar
  61. Sahoo, N. R., & Pandalai, H. S. (2000). Secondary geochemical dispersion in the Precambrian auriferous Hutti-Maski schist belt, Raichur district, Karnataka, India: part I: anomalies of As, Sb, Hg and Bi in soil and groundwater. Journal of Geochemical Exploration, 71, 269–289.CrossRefGoogle Scholar
  62. Serpa, C., Batterson, M., & Guzzwell, K. (2009). The influence of bedrock and mineral occurrences on arsenic concentrations in groundwater wells in the Gander Bay Area, Newfoundland: current research. Newfoundland and Labrador Department of Natural Resources Geological Survey, Report 09–1, 315–337.Google Scholar
  63. Serrat-Capdevila, A., Valdés, J. B., Pérez, J. G., Baird, K., Mata, L. J., & Maddock, T. (2007). Modeling climate change impacts-and uncertainty-on the hydrology of a riparian system: the San Pedro Basin (Arizona/Sonora). Journal of Hydrology, 347, 48–66.CrossRefGoogle Scholar
  64. Sharma, V. K., & Sohn, M. (2009). Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environment International, 35, 743–759.CrossRefGoogle Scholar
  65. Shukla, D. P., Dubey, C. S., Singh, N. P., Tajbakhsh, M., & Chaudhry, M. (2010). Sources and controls of arsenic contamination in groundwater of Rajnandgaon and Kanker District, Chattisgarh Central India. Journal of Hydrology, 395, 49–66.CrossRefGoogle Scholar
  66. Sidle, W. C. (2002). 18OSO4 and 18OH2O as prospective indicators of elevated arsenic in the Goose River ground-watershed, Maine. Environmental Geology, 42, 350–359.CrossRefGoogle Scholar
  67. Sidle, W. C., & Fischer, R. A. (2003). Detection of 3H and 85Kr in groundwater from arsenic-bearing crystalline bedrock of the Goose River basin, Maine. Environmental Geology, 44, 781–789.CrossRefGoogle Scholar
  68. Sidle, W. C., Wotten, B., & Murphy, E. (2001). Provenance of geogenic arsenic in the Goose River basin, Maine, USA. Environmental Geology, 41, 62–73.CrossRefGoogle Scholar
  69. Smedley, P. L. (1996). Arsenic in rural groundwater in Ghana. Journal of African Earth Sciences, 22, 459–470.CrossRefGoogle Scholar
  70. Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517–568.CrossRefGoogle Scholar
  71. Smedley, P. L., Knudsen, J., & Maiga, D. (2007). Arsenic in groundwater from mineralised Proterozoic basement rocks of Burkina Faso. Applied Geochemistry, 22, 1074–1092.CrossRefGoogle Scholar
  72. Sorg, T. J., Chen, A. S. C., & Wang, L. (2014). Arsenic species in drinking water wells in the USA with high arsenic concentrations. Water Research, 48, 156–169.CrossRefGoogle Scholar
  73. Stuart, M. E., Gooddy, D. C., Bloomfield, J. P., & Williams, A. T. (2011). A review of the impact of climate change on future nitrate concentrations in groundwater of the UK. Science of the Total Environment, 409, 2859–2873.CrossRefGoogle Scholar
  74. Taylor, C. A., & Stefan, H. G. (2009). Shallow groundwater temperature response to climate change and urbanization. Journal of Hydrology, 375, 601–612.CrossRefGoogle Scholar
  75. Taylor, R. G., Scanlon, B., Döll, P., Rodell, M., Van Beek, R., Wada, Y., Longuevergne, L., Leblanc, M., Famiglietti, J. S., Edmunds, M., et al. (2013). Ground water and climate change. Nature Climate Change, 3, 322–329.CrossRefGoogle Scholar
  76. Tisserand, D., Pili, E., Hellmann, R., Boullier, A.-M., & Charlet, L. (2014). Geogenic arsenic in groundwaters in the western Alps. Journal of Hydrology, 518, Part C, 317–325.CrossRefGoogle Scholar
  77. Todd, A. S., Manning, A. H., Verplanck, P. L., Crouch, C., McKnight, D. M., & Dunham, R. (2012). Climate-change-driven deterioration of water quality in a mineralized watershed. Environmental Science & Technology, 46, 9324–9332.CrossRefGoogle Scholar
  78. van Roosmalen, L., Sonnenborg, T. O., & Jensen, K. H. (2009). Impact of climate and land use change on the hydrology of a large-scale agricultural catchment. Water Resources Research, 45, W00A15.Google Scholar
  79. Verplanck, P. L., Mueller, S. H., Goldfarb, R. J., Nordstrom, D. K., & Youcha, E. K. (2008). Geochemical controls of elevated arsenic concentrations in groundwater, Ester Dome, Fairbanks district, Alaska. Chemical Geology, 255, 160–172.CrossRefGoogle Scholar
  80. Waibel, M. S., Gannett, M. W., Chang, H., & Hulbe, C. L. (2013). Spatial variability of the response to climate change in regional groundwater systems-examples from simulations in the Deschutes Basin, Oregon. Journal of Hydrology, 486, 187–201.CrossRefGoogle Scholar
  81. Weldon, J. M., & MacRae, J. D. (2006). Correlations between arsenic in Maine groundwater and microbial populations as determined by fluorescence in situ hybridization. Chemosphere, 63, 440–448.CrossRefGoogle Scholar
  82. World Water Assessment Programme. (2009). The United Nations World Water Development Report 3: water in a changing world. Paris: UNESCO.Google Scholar
  83. Yang, Q., Culbertson, C. W., Nielsen, M. G., Schalk, C. W., Johnson, C. D., Marvinney, R. G., Stute, M., & Zheng, Y. (2015). Flow and sorption controls of groundwater arsenic in individual boreholes from bedrock aquifers in central Maine, USA. Science of The Total Environment, 505, 1291–1307.CrossRefGoogle Scholar
  84. Yang, Q., Jung, H. B., Culbertson, C. W., Marvinney, R. G., Loiselle, M. C., Locke, D. B., Cheek, H., Thibodeau, H., & Zheng, Y. (2009). Spatial pattern of groundwater arsenic occurrence and association with bedrock geology in greater Augusta, Maine. Environmental science & technology, 43, 2714–2719.CrossRefGoogle Scholar
  85. Yang, Q., Jung, H. B., Marvinney, R. G., Culbertson, C. W., & Zheng, Y. (2012). Can arsenic occurrence rates in bedrock aquifers be predicted? Environmental Science & Technology, 46, 2080–2087.CrossRefGoogle Scholar
  86. Zheng, Y., & Ayotte, J. D. (2015). At the crossroads: hazard assessment and reduction of health risks from arsenic in private well waters of the northeastern United States and Atlantic Canada. Science of The Total Environment, 505, 1237–1247.CrossRefGoogle Scholar
  87. Zhou, Y., Zwahlen, F., Wang, Y., & Li, Y. (2010). Impact of climate change on irrigation requirements in terms of groundwater resources. Hydrogeology journal, 18, 1571–1582.CrossRefGoogle Scholar
  88. Zkeri, E., Aloupi, M., & Gaganis, P. (2015). Natural occurrence of arsenic in groundwater from Lesvos Island, Greece. Water, Air, & Soil Pollution, 226(9), 1–16.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Raphaël Bondu
    • 1
  • Vincent Cloutier
    • 1
  • Eric Rosa
    • 1
  • Mostafa Benzaazoua
    • 2
  1. 1.Groundwater Research Group, Institut de Recherche en Mines et en EnvironnementUniversité du Québec en Abitibi-TémiscamingueAmosCanada
  2. 2.Institut de Recherche en Mines et en EnvironnementUniversité du Québec en Abitibi-TémiscamingueRouyn-NorandaCanada

Personalised recommendations