Advertisement

Soil Carbon Dioxide Fluxes from Three Forest Types of the Tropical Montane Rainforest on Hainan Island, China

  • Xinhua Jiang
  • Huai ChenEmail author
  • Changhui Peng
  • Yide Li
  • Yixin He
  • Dexiang Chen
  • Mingxian Lin
  • Ji Hu
  • Tianli Ma
  • Liangfeng Liu
  • Xinwei Liu
  • Miao Xia
  • Yinggao LiuEmail author
Article

Abstract

Tropical forests play an important role in carbon cycle. However, the temporal and spatial variation in soil carbon dioxide (CO2) emission of tropical forest remains uncertain, especially near the Tropic of Cancer. In this research, we studied the annual soil CO2 fluxes from three tropical montane rainforests on the Hainan Island of China (pristine montane rainforest, PF; secondary montane rainforest, SF; and Podocarpus imbricatus plantation, PP). The results showed a lower annual average soil CO2 flux as 6.85 ± 0.52 Mg C-CO2 ha−1 (9.17 Mg C-CO2 ha−1 in the wet season and 4.50 Mg C-CO2 ha−1 in the dry season). The CO2 fluxes exhibited obviously seasonal variation during the study period. Among the three forest types, PF had the highest average CO2 flux rate of 317.77 ± 147.71 mg CO2 m−2 h−1 (433.08 mg CO2 m−2 h−1 in the wet season and 202.47 mg CO2 m−2 h−1 in the dry season), followed by PP of 286.84 ± 137.48 mg CO2 m−2 h−1 (367.12 mg CO2 m−2 h−1 in the wet season and 206.56 mg CO2 m−2 h−1 in the dry season) and SF of 255.09 ± 155.26 mg CO2 m−2 h−1 (351.48 mg CO2 m−2 h−1 in the wet season and 155.71 mg CO2 m−2 h−1 in the dry season). We found between CO2 fluxes and soil temperature a highly significant linear relation (P < 0.01) at 5 cm depth and a highly significant exponential correlation (P < 0.01) at 10 cm depth for all three forest types; a significant linear relation (P < 0.05) between CO2 fluxes and soil moisture content was found for SF and PF, but not for PP (P > 0.05). The CO2 flux was significantly correlated (P < 0.05) with water-filled pore space only for PF. In conclusion, our results suggested soil CO2 fluxes in the three forest types that exhibit obviously spatial and temporal variation, and the temperature is the major factor affecting soil CO2 fluxes from this region.

Keywords

Tropical montane rainforest Plantation Soil CO2 fluxes Soil temperature Temporal and spatial variation 

Notes

Acknowledgments

This study was supported by 100 Talents Program of The Chinese Academy of Sciences, Program for New Century Excellent Talents in University (NCET-12-0477), the National Natural Science Foundation of China (nos. 31100348 and 41201205), International S&T Cooperation Program of China (S2013GI0408), and China Qianren Project. The authors give special thanks to Ms. Wan Xiong for her editing and valuable comments on the manuscript.

References

  1. Adachi, M., Bekku, Y. S., Rashidah, W., Okuda, T., & Koizumi, H. (2006). Differences in soil respiration between different tropical ecosystems. Applied Soil Ecology, 34, 258–265.CrossRefGoogle Scholar
  2. Akburak, S., & Makineci, E. (2013). Temporal changes of soil respiration under different tree species. Environmental Monitoring and Assessment, 185, 3349–3358.CrossRefGoogle Scholar
  3. Bai, Z. Z., Yang, G., Chen, H., Zhu, Q. V., Chen, D. X., Li, Y. D., Wang, X., Wu, Z. M., Zhou, G. Y., & Peng, C. H. (2014). Nitrous oxide fluxes from three forest types of the tropical mountain rainforests on Hainan Island, China. Atmospheric Environment, 92, 469–477.CrossRefGoogle Scholar
  4. Blagodatskaya, E., Zheng, X., Blagodatsky, S., Wiegl, R., Dannenmann, M., & Butterbach-Bahl, K. (2014). Oxygen and substrate availability interactively control the temperature sensitivity of CO2 and N2O emission from soil. Biology and Fertility of Soils, 50, 775–783.CrossRefGoogle Scholar
  5. Bond-Lamberty, B., & Thomson, A. (2010). A global database of soil respiration data. Biogeosciences, 7, 1915–1926.CrossRefGoogle Scholar
  6. Boyer, J. N., & Groffman, P. M. (1996). Bioavailability of water extractable organic carbon fractions in forest and agricultural soil profiles. Soil Biology and Biochemistry, 28, 783–790.CrossRefGoogle Scholar
  7. Bujalský, L., Kaneda, S., Dvorščík, P., & Frouz, J. (2014). In situ soil respiration at reclaimed and unreclaimed post-mining sites: responses to temperature and reclamation treatment. Ecological Engineering, 68, 53–59.CrossRefGoogle Scholar
  8. Canadell, J. G., Le Quéré, C., Raupach, M. R., Field, C. B., Buitenhuis, E. T., Ciais, P., Conway, T. J., Gillett, N. P., Houghton, R., & Marland, G. (2007). Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences, 104, 18866–18870.CrossRefGoogle Scholar
  9. Cardoso, S. J., Vidal, L. O., Mendonca, R. F., Tranvik, L. J., Sobek, S., & Roland, F. (2013). Spatial variation of sediment mineralization supports differential CO2 emissions from a tropical hydroelectric reservoir. Frontiers in Microbiology, 4, 8.CrossRefGoogle Scholar
  10. Chen, D. X., Li, Y. D., Liu, H. P., Xu, H., Xiao, W. F., Luo, T. S., Zhou, Z., & Lin, M. X. (2010). Biomass and carbon dynamics of a tropical mountain rain forest in China. Science China. Life Sciences, 53, 798–810.CrossRefGoogle Scholar
  11. Cheng, J. Z., Lee, X. Q., Zhou, Z. H., Wang, B., Xing, Y., Cheng, H. G., & Tang, Y. (2013). The effects of litter layer and soil properties on the soil-atmosphere fluxes of greenhouse gases in Karst Forest, Southwest China. Polish Journal of Ecology, 61, 79–92.Google Scholar
  12. Cook, R. L., Binkley, D., Mendes, J. C. T., & Stape, J. L. (2014). Soil carbon stocks and forest biomass following conversion of pasture to broadleaf and conifer plantations in southeastern Brazil. Forest Ecology and Management, 324, 37–45.CrossRefGoogle Scholar
  13. Cox, P. M., Pearson, D., Booth, B. B., Friedlingstein, P., Huntingford, C., Jones, C. D., & Luke, C. M. (2013). Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature, 494, 341–344.CrossRefGoogle Scholar
  14. Davidson, E., Belk, E., & Boone, R. D. (1998). Soil water content and temperature as independent or confounded factors controlling soil respiration in a temperate mixed hardwood forest. Global Change Biology, 4, 217–227.CrossRefGoogle Scholar
  15. Davidson, E. A., Nepstad, D. C., Ishida, F. Y., & Brando, P. M. (2008). Effects of an experimental drought and recovery on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest. Global Change Biology, 14, 2582–2590.CrossRefGoogle Scholar
  16. Deng, Q., Zhou, G., Liu, J., Liu, S., Duan, H., & Zhang, D. (2010). Responses of soil respiration to elevated carbon dioxide and nitrogen addition in young subtropical forest ecosystems in China. Biogeosciences, 7, 315–328.CrossRefGoogle Scholar
  17. Deng, Q., Cheng, X., Zhou, G., Liu, J., Liu, S., Zhang, Q., & Zhang, D. (2013). Seasonal responses of soil respiration to elevated CO2 and N addition in young subtropical forest ecosystems in southern China. Ecological Engineering, 61, 65–73.CrossRefGoogle Scholar
  18. Díaz-Pinés, E., Schindlbacher, A., Godino, M., Kitzler, B., Jandl, R., Zechmeister-Boltenstern, S., & Rubio, A. (2014). Effects of tree species composition on the CO2 and N2O efflux of a Mediterranean mountain forest soil. Plant and Soil, 384, 243–257.CrossRefGoogle Scholar
  19. Dong, L. Y., Wu, C. S., Gao, J. M., & Sha, L. Q. (2012). Effects of simulated rainfall on the soil respiration in tropical secondary forest and rubber plantation in Xishuangbanna of Yunnan, Southwest China. Chinese Journal of Ecology, 31, 1887–1892.Google Scholar
  20. Fan, H. B., Wu, J. P., Liu, W. F., Yuan, Y. H., Huang, R. Z., Liao, Y. C., & Li, Y. Y. (2014). Nitrogen deposition promotes ecosystem carbon accumulation by reducing soil carbon emission in a subtropical forest. Plant and Soil, 379, 361–371.CrossRefGoogle Scholar
  21. Fender, A.-C., Gansert, D., Jungkunst, H. F., Fiedler, S., Beyer, F., Schützenmeister, K., Thiele, B., Valtanen, K., Polle, A., & Leuschner, C. (2013). Root-induced tree species effects on the source/sink strength for greenhouse gases (CH4, N2O and CO2) of a temperate deciduous forest soil. Soil Biology and Biochemistry, 57, 587–597.CrossRefGoogle Scholar
  22. Han, G., Zhou, G., Xu, Z., Yang, Y., Liu, J., & Shi, K. (2007). Soil temperature and biotic factors drive the seasonal variation of soil respiration in a maize (Zea mays L.) agricultural ecosystem. Plant and Soil, 291, 15–26.CrossRefGoogle Scholar
  23. Hanson, P., Edwards, N., Garten, C., & Andrews, J. (2000). Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry, 48, 115–146.CrossRefGoogle Scholar
  24. Hashimoto, S., Tanaka, N., Suzuki, M., Inoue, A., Takizawa, H., Kosaka, I., Tanaka, K., Tantasirin, C., & Tangtham, N. (2004). Soil respiration and soil CO2 concentration in a tropical forest, Thailand. Journal of Forest Research, 9, 75–79.CrossRefGoogle Scholar
  25. Hassan, W., David, J., & Abbas, F. (2014). Effect of type and quality of two contrasting plant residues on CO2 emission potential of Ultisol soil: Implications for indirect influence of temperature and moisture. Catena, 114, 90–96.CrossRefGoogle Scholar
  26. Huang, Z., Yu, Z. & Wang, M. (2014) Environmental controls and the influence of tree species on temporal variation in soil respiration in subtropical China. Plant and Soil, 1–13Google Scholar
  27. IPCC (2013) Summary for policymakers. In Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (Eds.), Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA, Cambridge University Press.Google Scholar
  28. Itoh, M., Kosugi, Y., Takanashi, S., Kanemitsu, S., Osaka, K. i., Hayashi, Y., Tani, M., & Rahim Nik, A. (2012). Effects of soil water status on the spatial variation of carbon dioxide, methane and nitrous oxide fluxes in tropical rain-forest soils in Peninsular Malaysia. Journal of Tropical Ecology, 28, 557–570.CrossRefGoogle Scholar
  29. Jauhiainen, J., Takahashi, H., Heikkinen, J. E., Martikainen, P. J., & Vasander, H. (2005). Carbon fluxes from a tropical peat swamp forest floor. Global Change Biology, 11, 1788–1797.CrossRefGoogle Scholar
  30. Jia, H. T., Zhu, X. P., Sheng, Y., Zhao, C. Y., Xu, Y. J., & Kadipov, K. G. (2013). Characteristics of soil CO2 emission of 3 kinds of woodland ecosystems in arid areas. Science of Soil and Water Conservation, 11, 95–98.Google Scholar
  31. Jiang, H., Deng, Q., Zhou, G., Hui, D., Zhang, D., Liu, S., Chu, G., & Li, J. (2013). Responses of soil respiration and its temperature/moisture sensitivity to precipitation in three subtropical forests in southern China. Biogeosciences, 10, 3963–3982.CrossRefGoogle Scholar
  32. Katayama, A., Kume, T., Komatsu, H., Ohashi, M., Nakagawa, M., Yamashita, M., Otsuki, K., Suzuki, M., & Kumagai, T. (2009). Effect of forest structure on the spatial variation in soil respiration in a Bornean tropical rainforest. Agricultural and Forest Meteorology, 149, 1666–1673.CrossRefGoogle Scholar
  33. Kiese, R., & Butterbach-Bahl, K. (2002). N2O and CO2 emissions from three different tropical forest sites in the wet tropics of Queensland, Australia. Soil Biology and Biochemistry, 34, 975–987.CrossRefGoogle Scholar
  34. Koehler, B., Corre, M. D., Veldkamp, E., & Sueta, J. P. (2009). Chronic nitrogen addition causes a reduction in soil carbon dioxide efflux during the high stem-growth period in a tropical montane forest but no response from a tropical lowland forest on a decadal time scale. Biogeosciences, 6, 2973–2983.CrossRefGoogle Scholar
  35. Kosugi, Y., Mitani, T., Ltoh, M., Noguchi, S., Tani, M., Matsuo, N., Takanashi, S., Ohkubo, S., & Nik, A. R. (2007). Spatial and temporal variation in soil respiration in a Southeast Asian tropical rainforest. Agricultural and Forest Meteorology, 147, 35–47.CrossRefGoogle Scholar
  36. Li, H. F. (2011). Study on soil CO2 and CH4 fluxes in four typical plantations in Southern China. Journal of Zhejiang for Science & Technology, 31, 6–12.Google Scholar
  37. Li, Y. D., Chen, B. F., & Zhou, G. Y. (2002). The research of tropical forests and biodiversity protection in Hainan, China. Beijing: China Forestry Publishing House.Google Scholar
  38. Liang, J.B., (2002). Greenhouse gases and animal agriculture in Asia. Greenhouse Gases and Animal Agriculture: Proceedings, 15–20.Google Scholar
  39. Lin, L. S., Han, S. J., Wang, Y. S., & Gu, Z. J. (2004). The study of soil CO2 efflux from four forest types in Changbaishan, China. Chinese Journal of Ecology, 23, 42–45.Google Scholar
  40. Liptzin, D., Silver, W. L., & Detto, M. (2011). Temporal dynamics in soil oxygen and greenhouse gases in two humid tropical forests. Ecosystems, 14, 171–182.CrossRefGoogle Scholar
  41. Lou, Y., Li, Z., Zhang, T., & Liang, Y. (2004). CO2 emissions from subtropical arable soils of China. Soil Biology and Biochemistry, 36, 1835–1842.CrossRefGoogle Scholar
  42. Luo, T., Chen, B., Li, Y., Lin, M., Zhou, G., Chen, D., & Qiu, J. (2001). Litter and soil respiration in a tropical mountain rain forest in Jianfengling, Hainan Island. Acta Ecologica Sinica, 21, 2013–2017.Google Scholar
  43. Matvienko, A. I., Makarov, M. I., & Menyailo, O. V. (2014). Biological sources of soil CO2 under Larix sibirica and Pinus sylvestris. Russian Journal of Ecology, 45, 174–180.CrossRefGoogle Scholar
  44. Mo, J. M., Fang, Y. T., Xu, G. L., Li, D. J., & Xue, J. H. (2005). The short-term responses of soil CO2 emission and CH4 uptake to simulated N deposition in nursery and forests of Dinghushan in subtropical China. Acta Ecologica Sinica, 25, 682–690.Google Scholar
  45. Mosier, A. R. (1998). Soil processes and global change. Biology and Fertility of Soils, 27, 221–229.CrossRefGoogle Scholar
  46. Nottingham, A. T., Ccahuana, A. J. Q., & Meir, P. (2012). Soil properties in tropical montane cloud forests influence estimates of soil CO2 efflux. Agricultural and Forest Meteorology, 166, 215–220.CrossRefGoogle Scholar
  47. Ohkubo, S., Kosugi, Y., Takanashi, S., Mitani, T., & Tani, M. (2007). Comparison of the eddy covariance and automated closed chamber methods for evaluating nocturnal CO2 exchange in a Japanese cypress forest. Agricultural and Forest Meteorology, 142, 50–65.CrossRefGoogle Scholar
  48. Osuri, A. M., Kumar, V. S., & Sankaran, M. (2014). Altered stand structure and tree allometry reduce carbon storage in evergreen forest fragments in India’s Western Ghats. Forest Ecology and Management, 329, 375–383.CrossRefGoogle Scholar
  49. Pypker, T. G., & Fredeen, A. L. (2003). Below ground CO2 efflux from cut blocks of varying ages in sub-boreal British Columbia. Forest Ecology and Management, 172, 249–259.CrossRefGoogle Scholar
  50. Rowlings, D., Grace, P., Kiese, R., & Weier, K. (2012). Environmental factors controlling temporal and spatial variability in the soil-atmosphere exchange of CO2, CH4 and N2O from an Australian subtropical rainforest. Global Change Biology, 18, 726–738.CrossRefGoogle Scholar
  51. Schindlbacher, A., Zechmeister-Boltenstern, S., Glatzel, G., & Jandl, R. (2007). Winter soil respiration from an Austrian mountain forest. Agricultural and Forest Meteorology, 146, 205–215.CrossRefGoogle Scholar
  52. Schlesinger, W. H., & Andrews, J. A. (2000). Soil respiration and the global carbon cycle. Biogeochemistry, 48, 7–20.CrossRefGoogle Scholar
  53. Sha, L. Q., Zheng, Z., Tang, J. W., Wang, Y. H., Zhang, Y. P., Cao, M., Wang, R., Liu, G. G., Wang, Y. S., & Sun, Y. (2005). Soil respiration in tropical seasonal rain forest in Xishuangbanna, SW China. Science in China Series D: Earth Sciences, 48, 189–197.CrossRefGoogle Scholar
  54. Silver, W. L., Lugo, A., & Keller, M. (1999). Soil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soils. Biogeochemistry, 44, 301–328.Google Scholar
  55. Silvola, J., Alm, J., Ahlholm, U., Nykanen, H., & Martikainen, P. J. (1996). The contribution of plant roots to CO2 fluxes from organic soils. Biology and Fertility of Soils, 23, 126–131.CrossRefGoogle Scholar
  56. Singh, B. K., Bardgett, R. D., Smith, P., & Reay, D. S. (2010). Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nature Reviews Microbiology, 8, 779–790.CrossRefGoogle Scholar
  57. Soe, A. R. B., & Buchmann, N. (2005). Spatial and temporal variations in soil respiration in relation to stand structure and soil parameters in an unmanaged beech forest. Tree Physiology, 25, 1427–1436.CrossRefGoogle Scholar
  58. Subke, J. A., Reichstein, M., & Tenhunen, J. D. (2003). Explaining temporal variation in soil CO2 efflux in a mature spruce forest in Southern Germany. Soil Biology and Biochemistry, 35, 1467–1483.CrossRefGoogle Scholar
  59. Tang, X. L., Liu, S. G., Zhou, G. Y., Zhang, D. Q., & Zhou, C. Y. (2006a). Soil-atmospheric exchange of CO2, CH4, and N2O in three subtropical forest ecosystems in southern China. Global Change Biology, 12, 546–560.CrossRefGoogle Scholar
  60. Tang, X. L., Zhou, G. Y., Liu, S. G., Zhang, D. Q., Liu, S. Z., Li, J., & Zhou, C. Y. (2006b). Dependence of soil respiration on soil temperature and soil moisture in successional forests in southern China. Journal of Integrative Plant Biology, 48, 654–663.CrossRefGoogle Scholar
  61. Thomas, M. V., Malhi, Y., Fenn, K. M., Fisher, J. B., Morecroft, M. D., Lloyd, C. R., Taylor, M. E., & McNeil, D. D. (2011). Carbon dioxide fluxes over an ancient broadleaved deciduous woodland in southern England. Biogeosciences, 8, 1595–1613.CrossRefGoogle Scholar
  62. van Groenigen, K. J., Osenberg, C. W., & Hungate, B. A. (2011). Increased soil emissions of potent greenhouse gases under increased atmospheric CO2. Nature, 475, 214–216.CrossRefGoogle Scholar
  63. von Arnold, K., Nilsson, M., Hanell, B., Weslien, P., & Klemedtsson, L. (2005). Fluxes of CO2, CH4 and N2O from drained organic soils in deciduous forests. Soil Biology and Biochemistry, 37, 1059–1071.CrossRefGoogle Scholar
  64. Wang, M., Han, S., & Wang, Y. (2004). Important factors controlling CO2 emission rates from forest soil. Chinese Journal of Ecology, 23, 242229.Google Scholar
  65. Wangluk, S., Boonyawat, S., Diloksumpun, S., & Tongdeenok, P. (2013). Role of soil temperature and moisture on soil respiration in a teak plantation and mixed deciduous forest in Thailand. Journal of Tropical Forest Science, 25, 339–349.Google Scholar
  66. Werner, C., Zheng, X. H., Tang, J. W., Xie, B. H., Liu, C. Y., Kiese, R., & Butterbach-Bahl, K. (2006). N2O, CH4 and CO2 emissions from seasonal tropical rainforests and a rubber plantation in Southwest China. Plant and Soil, 289, 335–353.CrossRefGoogle Scholar
  67. Wood, T. E., Cavaleri, M. A., & Reed, S. C. (2012). Tropical forest carbon balance in a warmer world: a critical review spanning microbial-to ecosystem-scale processes. Biological Reviews, 87, 912–927.CrossRefGoogle Scholar
  68. Wood, T. E., Detto, M., & Silver, W. L. (2013). Sensitivity of soil respiration to variability in soil moisture and temperature in a humid tropical forest. Plos One, 8, 7.Google Scholar
  69. Wu, Z. M., Zeng, Q. B., Li, Y. D., Zhou, G. Y., Chen, B. F., Du, Z. H., & Lin, M. X. (1997). A preliminary research on the carbon storage and CO2 release of the tropical forest soils in Jianfengling, Hainan an Island, China. Acta Phytoecologica Sinica, 21, 8.Google Scholar
  70. Xu, X. K., Han, L., Luo, X. B., Liu, Z. R., & Han, S. J. (2009). Effects of nitrogen addition on dissolved N2O and CO2, dissolved organic matter, and inorganic nitrogen in soil solution under a temperate old-growth forest. Geoderma, 151, 370–377.CrossRefGoogle Scholar
  71. Yan, J. H., Zhang, W., Wang, K. Y., Qin, F., Wang, W. T., Dai, H. T., & Li, P. X. (2014). Responses of CO2, N2O and CH4 fluxes between atmosphere and forest soil to changes in multiple environmental conditions. Global Change Biology, 20, 300–312.CrossRefGoogle Scholar
  72. Zanchi, F. B., Meesters, A., Waterloo, M. J., Kruijt, B., Kesselmeier, J., Luizao, F. J., & Dolman, A. J. (2014). Soil CO2 exchange in seven pristine Amazonian rain forest sites in relation to soil temperature. Agricultural and Forest Meteorology, 192, 96–107.CrossRefGoogle Scholar
  73. Zhang, J. H., Han, S. J., & Yu, G. R. (2006). Seasonal variation in carbon dioxide exchange over a 200-year-old Chinese broad-leaved Korean pine mixed forest. Agricultural and Forest Meteorology, 137, 150–165.CrossRefGoogle Scholar
  74. Zhou, W., Sha, L., Shen, S., & Zheng, Z. (2008). Seasonal change of soil respiration and its influence factors in rubber (Hevea brasiliensis) plantation in Xishuangbanna, SW China. Journal of Mountain Science, 26, 317–325.Google Scholar
  75. Zhou, Z., Jiang, L., Du, E. Z., Hu, H. F., Li, Y. D., Chen, D. X., & Fang, J. Y. (2013). Temperature and substrate availability regulate soil respiration in the tropical mountain rainforests, Hainan Island, China. Journal of Plant Ecology, 6, 325–334.CrossRefGoogle Scholar
  76. Zhou, W. P., Hui, D. F., & Shen, W. J. (2014). Effects of soil moisture on the temperature sensitivity of soil heterotrophic respiration: a laboratory incubation study. Plos One, 9, 10.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Xinhua Jiang
    • 1
    • 2
    • 8
  • Huai Chen
    • 2
    • 3
    Email author
  • Changhui Peng
    • 4
    • 5
  • Yide Li
    • 6
  • Yixin He
    • 2
    • 3
  • Dexiang Chen
    • 6
  • Mingxian Lin
    • 6
  • Ji Hu
    • 2
    • 4
  • Tianli Ma
    • 2
    • 4
  • Liangfeng Liu
    • 2
    • 4
  • Xinwei Liu
    • 2
    • 3
  • Miao Xia
    • 7
    • 8
  • Yinggao Liu
    • 1
    Email author
  1. 1.College of ForestrySichuan Agricultural UniversityChengduChina
  2. 2.Zoige Peatland and Global Change Research StationChinese Academy of SciencesHongyuanChina
  3. 3.Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
  4. 4.State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, College of ForestryNorthwest A&F UniversityYanglingChina
  5. 5.Institute of Environment Sciences, Department of Biology ScienceUniversity of Quebec at MontrealMontrealCanada
  6. 6.Research Institute of Tropical ForestryChinese Academy of ForestryGuangzhouChina
  7. 7.College of Life ScienceSichuan Agricultural UniversityChengduChina
  8. 8.Research Insititute of Forestry ScienceGarze Tibetan Autonomous PrefectureKangdingChina

Personalised recommendations