Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Integrated Geochemistry, Isotopes, and Geostatistical Techniques to Investigate Groundwater Sources and Salinization Origin in the Sharm EL-Shiekh Area, South Sinia, Egypt

  • 420 Accesses

  • 9 Citations

Abstract

The Sharm El-Sheikh area is one of the most attractive touristic resorts in Egypt and in the world in general. The Sharm El-Shiekh area is located at the arid region of the South Sinai Peninsula, Egypt. Water desalination is considered the main freshwater supply for hotels and resorts. Scarcity of rainfall during the last decades, high pumping rates, disposal of reject brine water back into the aquifer, and seawater intrusion have resulted in the degradation of groundwater quality in the main aquifer. Water chemistry, stable isotopes, Seawater Mixing Index (SWMI), and factorial analyses were utilized to determine the main recharge and salinization sources as well as to estimate the mixing ratios between different end members affecting groundwater salinity in the aquifer. The groundwater of the Miocene aquifer is classified into two groups: group I represents 10 % of the total samples, has a moderately high saline groundwater, and is mostly affected by seawater intrusion. Group II represents 90 % of the total samples and has a high groundwater salinity due to the anthropological impact of the reject brine saline water deeper into the Miocene aquifer. The main groundwater recharge comes from the western watershed mountain and the elevated plateau while the seawater and reject brine are considering the main sources for groundwater salinization. The mixing ratios between groundwater recharge, seawater, and reject brine water were calculated using water chemistry and isotopes. The calculated mixing ratios of group I range between 25 and 84 % recharge groundwater to 75 and 16 % seawater, respectively, in groundwater located close to the western watershed mountain indicating further extension of seawater intrusion. However, the mixing percentages of group II range between 21 and 88 % reject brine water to 79 and 12 % seawater, respectively, in groundwater located close to the desalination plants. The outcomes and conclusion of this study highlight the importance of groundwater management to limit further groundwater deterioration of the Miocene groundwater aquifer and limit seawater intrusion along the coast.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Abd Allah, A. A. (1999). Geological and geophysical studies for groundwater investigation in Sharm El-Sheikh-Ras Mohamed area South Sinai, Egypt. Dissertation, Ph. D., Al Alzhar University Cairo Egypt, pp. 118.

  2. Abdallah, A. A., & El Hefnawy, M. A. (2002). Groundwater investigation at Sharm El-Sheikh area, South Sinai, Egypt. Annals Geological Survey Egypt, 417–427.

  3. Abdeltawab, S. (2012). Rock fall failure model practical example of Umm Sid Plateau-Sharm El Sheikh area, Egypt. International Journal of Scientific & Engineering Research, 3(10), 2229–5518.

  4. Abou Rayan, M., Djebedjian, B., & Khaled, I. (2001). Water supply and demand and a desalination option for Sinai Egypt. Desalination, 136, 73–81.

  5. Abu-Alam, T. S., & Stüwe, K. (2009). Exhumation during oblique transpression: an example from the Feiran-Solaf region, Egypt. Journal Metamorphic Geology, 27, 439–459.

  6. Abu-Alam, T. S., Stüwe, K., & Hauzenberger, C. (2010). Calc-silicates from Wadi Solaf region Sinai, Egypt. Journal of African Earth Science, 58, 475–488.

  7. Aggour, T. A., Shabana, A. R., Shided, A. G., & Yehia, M. M. (2000). Hydrogeological conditions of the water bearing formations in Wadi Watir basin with emphasis on the deep ones. 2nd International Conference on Basic Science and Advanced Technology, Faculty of Science Assiut University, 13 p.

  8. American Public Health Association (APHA). (1995). American Water Works Association, Water Pollution Control Federation, Standard methods for the examination of water and wastewater. Washington: American Public Health Association.

  9. American Public Health Association (APHA), (1998). Standard methods for the examination of water and wastewater, 20th edn. Washington, DC, 46p.

  10. American Society for Testing Materials (ASTM), (2002). Water and environmental technology. Annual book of ASTM standards, U.S.A. Sec. 11, Vol.11.01and 11.02 West Conshohocken.

  11. American Water Works Association (AWWA). (1971). Water quality and treatment. New York: McGraw-Hill.

  12. Awwad, R. A., Olsthoorn, T. N., Zhou, Y., Uhlenbrook, S., & Smidt, E. (2008). Optimum pumping-injection system for saline groundwater desalination in Sharm El Sheikh. Water Mill Working Paper No. 11, 21 page.

  13. Barbecot, F., Marlin, C., Gibert, E., & Dever, L. (2000). Hydrochemical and isotopic characterisation of the Bathonian and Bajocian coastal aquifer of the Caen area (Northern France). Applied Geochemistry, 15(6), 791–805. doi:10.1016/S0883-2927(99)00088-8.

  14. Batayneh, A. T. (2006). Use of electrical resistivity methods for detecting subsurface fresh and saline water and delineating their interfacial configuration a case study of the eastern Dead Sea coastal aquifers. Jordan, Hydrogeology Journal, 14(7), 1277–1283.

  15. Batayneh, A. T., Elawadi, E. A., & Al-Arifi, N. S. (2010). Use of geoelectrical technique for detecting subsurface fresh and saline water a case study of the eastern gulf of Aqaba Coastal Aquifer Jordan. Journal of Coastal Research, 26(6), 1079–1084. doi:10.2112/JCOASTRES-D-09-00006.1.

  16. Bear, J. (1999). Seawater intrusion in coastal aquifers: concepts methods and practices Boston. Mass: Kluwer Academic.

  17. Bentor, Y. K. (1985). The crustal evolution of the Arabo-Nubian Massif with special reference to the Sinai Peninsula. Precambrian Research, 28, 1–74.

  18. Birke, M., Rauch, U., Harazim, B., Lorenz, H., & Glatte, W. (2010). Major and trace elements in German bottled water, their regional distribution, and accordance with national and international standards. Journal Geochemical Exploration, 107, 245–271.

  19. Brown, E. M., Skougslad, W., & Fishman, M. J. (1970). Methods for collection and analysis of water samples for dissolved minerals and gases. In: U.S. Geological Survey Techniques for water resources investigations. USGS, Washington, DC, Book 5, chap A1.

  20. Chadha, D. K. (1999). A proposed new diagram for geochemical classification of natural waters and interpretation of chemical data. Hydrogeol Journal, 7, 431–439.

  21. Clark, I. D., & Fritz, P. (1997). Environmental isotopes in hydrogeology. Boca Raton Florida: Lewis Publishers.

  22. Coetsiers, M., & Walraevens, K. (2006). Chemical characterization of the Neogene Aquifer Belgium. Hydrogeology Journal, 14, 1556–1568. doi:10.1007/s10040-006-0053-032.

  23. Conoco Continental Oil Company (1987). Geological map of Egypt, (Scale 1:500,000).

  24. Cools, J., Vanderkimpen, P., Afandi, E., Abdelkhalek, A., Fockedey, S., El Sammany, M., Abdallah, G., El Bihery, M., Bauwens, W., & Huygens, M. (2012). An early warning system for flash floods in hyper-arid Egypt. Nat Hazards Earth System Science, 12, 443–457.

  25. Coplen, T. B. (1994). Reporting of stable hydrogen carbon and oxygen isotopic abundances. Pure and Applied Chemistry, 66, 273–276.

  26. Coplen, T. B., Wildman, J. D., & Chen, J. (1991). Improvements in the gaseous hydrogen-water equilibrium technique for hydrogen isotope ratio analysis. Analyt Chemisty, 63, 910–912.

  27. Craig, H. (1961). Isotopic variations in meteoric waters. Science, 133, 1702–1703.

  28. Dames & Moore (1983). Sinai development study final report. Submitted to the advisory committee for reconstructions ministry of development, Arab Republic of Egypt.

  29. Desconnets, J. C., Taupin, J. D., Lebel, T., & Leduc, C. (1997). Hydrology of the HAPEX-Sahel Central Super-Site: surface water drainage and aquifer recharge through the pool systems. Journal of Hydrology, 188–189, 155–178.

  30. Domenico, P. A., & Schwartz, F. W. (1990). Physical and chemical hydrogeology (p. 824). New York: Wiley.

  31. Egyptian Geological Survey and Mining Authority (EGSMA) (1981). Geological map of South Sinai Egypt, (Scale 1:250,000).

  32. Egyptian Geological Survey and Mining Authority (EGSMA) (1994). Geological map of South Sinai scale 1:250,000.

  33. Eissa, M. (2012). Groundwater Resource Sustainability in Wadi Watir Watershed, Sinai, Egypt. Dissertation, submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Hydrogeology University of Nevada, Reno, August, 2012 UMI Number: 3539186.

  34. Eissa, M., Thomas, J. M., Hershey, R. L., Pohll, G. M., Dawoud, M. I., Dahab, K. A., Gomaa, M. A., & Shabana, A. R. (2013a). Geochemical and isotopic evolution of groundwater in the Wadi Watir watershed, Sinai Peninsula, Egypt. Environmental Earth Sciences, 71(4), 1855–1869.

  35. Eissa, M., Thomas, J. M., Pohll, G. M., Hershey, R. L., Dahab, K., Dawoud, M., Gomaa, M., & El Shiekh, A. (2013b). Groundwater resource sustainability in the Wadi Watir delta, Gulf of Aqaba. Hydrogeology Journal, 21(8), 1833–1851.

  36. El Manakhly, M. M., Mohamed, H. A., Osama, M. R. F., El- Hinnawi, M. E., & Soliman, K. A. (1997). Geology and geochemical exploration along the basement-sedimentary contact in south Sinia, Egypt. Final report of expedition No. 20.

  37. El Moujabber, M., Bou Samra, B., Darwish, T., & Atallah, T. (2006). Comparison of different indicators for groundwater contamination by seawater intrusion on the Lebanese coast. Water Resources Management, 20, 161–180. doi:10.1007/s11269-006-7376-4.

  38. El Sayed, A. A., Mohamed, B. S., Shatia, F. A., & Abdalla, A. A. (1990). Preliminary report geophysical study for groundwater prospecting at Wadi Kid, Wadi Mander, Sharm El Sheikh, South Sinai. Internal Report No. 49/1990.

  39. El-Refeai, A. A. (1992). Water resources of southern Sinai Egypt geomorphological and hydrogeological studies Ph.D. Sci. Thesis, Faculty of Science Cairo University, 357p.

  40. El-Refeai, A. A. (1999). Sharm El Sheikh desalination plant: hydrogeological and environmental approach. Journal Petroleum & Engineering, 2, 1–21.

  41. El-Sayed, M. H. (2006). Comparative study of water quality of the Quaternary aquifer in Wadi Watir basin and its delta. Southeast Sinia, Egypt. Egyptian Journal Desert Research, 56(1), 17–46.

  42. Epstein, S., & Mayeda, T. K. (1953). Variations of 18O content of waters from natural sources. Geochimica et Cosmochimica Acta, 4, 213–224.

  43. Farahat, E. S., Zaki, R., Hauzenberger, C., & Sami, M. (2011). Neoproterozoic calc-alkaline peraluminous granitoids of the Deleihimmi pluton Central Eastern Desert Egypt: implications for transition from late- to post-collisional tectonomagmatic evolution in the northern Arabian–Nubian Shield. Geological Journal, 46, 544–560.

  44. Fishman, M. J., & Friedman, L. C. (1985). Methods for determination of inorganic substances in water and fluvial sediments, U.S. Geological Survei Book 5, Chapter A1. Open File Report 84:85–495 Denver Colorado U.S.A. for hydrogen isotope analysis. Analytical Chemistry, 63, 910–912.

  45. Garrels, R., & Mackenzie, F. (1967). Origin of the chemical compositions of some springs and lakes. In R. F. Ground (Ed.), Equilibrium concepts in natural water systems. Washington: American Chemical Society Publications.

  46. Gat, J.R., & Gonfiantini, R. (1981). Stable isotope hydrology deuterium and oxygen-18 in the water cycle. Technical Reports Series No 210 Vienna Austria: IAEA.

  47. Gat, J. R., Mazor, E., & Tzur, Y. (1969). The stable isotope composition of mineral waters in the Jordan Rift Valley. Journal of Hydrology, 7, 334–352.

  48. Ghoneim, M. F., Heikal, M. T. S., El Dosuky, B. T., Abu-Alam, T., & Sherif, M. I. (2015). Neoproterozoic granites of Sharm El-Sheikh area Egypt: mineralogical and thermobarometric variations. Arabian Journal of Geosciences, 8, 125–141. doi:10.1007/s12517-013-1182-0.

  49. Gibbs, R. J. (1970). Mechanisms controlling world water chemistry. Science, 170, 1088–1090.

  50. Glater, J. & Cohen, Y. (2003). Brine disposal from land based membrane desalination plants, a critical assessment (DRAFT). Metropolitan water district of Southern California. Available from: http://www.polysep.ucla.edu/Publications/Papers_PDF/BRINE%20DISPOSAL.pdf (accessed 21.05.08.).

  51. Greenwood, N. H. (1997). The Sinai: a physical geography. Austin: University of Texas Press.

  52. Guler, C., & Thyne, G. D. (2004). Hydrologic and geologic factors controlling surface and groundwater chemistry in Indian Wells-Owens Valley area, southeastern California, USA. Journal of Hydrology, 285, 177–198.

  53. Hafez, A., & El Manharawy, S. (2002). Economics of seawater RO desalination in the Red Sea region, Egypt. Part 1: a case study. Desalination, 153, 335–347.

  54. Helena, B., Pardo, R., Vega, M., Barrado, E., Fernandez, J. M., & Fernandez, L. (2000). Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis. Water Research, 34, 807–816.

  55. Hem, J. D. (1989). Study and interpretation of the chemical characteristics of natural water. US Geological Survey Water-Supply.

  56. Hem, J. D. (1991). Study and interpretation of the chemical characteristics of natural water. 3rd ed. Scientific Publication Jodhpur, India 2254.

  57. Himida, I. H. (1997). Water resources of Wadi Watir. Internal report, Desert Research Center (In Arabic).

  58. IAEA, (1981). Stable isotope hydrology: deuterium and oxygen-18 in water cycle. In: Gat JR, Gonfiantini R (eds) Technical report no. 210 International Atomic Energy Agency Vienna, 339 pp.

  59. Jones, B. F., Vengosh, A., Rosenthal, E., & Yechieli, Y., (1999). Geochemical investigations In: Bear J., Cheng A.H.D., Sorek S., Ouazar D., & Herrera I., Eds., Seawater intrusion in coastal aquifers. Kluwer Academic Publishers, Dordrecht/Boston/London, (22) p 1–71.

  60. Kim, R. H., Yum, B. W., & Chang, H. W. (2002). Hydrogeochemical and isotopic characteristics for salinization of a shallow groundwater in coastal area, Youngkwang, Korea (pp. 227–237). The Netherlands: Proc. 17th Salt Water Intrusion Meeting Delft.

  61. Klassen, J., Allen, D. M., & Kirste, D. (2014). Chemical indicators of saltwater intrusion for the Gulf Islands, British Columbia Department of Earth Sciences, Simon Fraser University (SFU), Final Report Submitted to BC Ministry of Forests, Lands and Natural Resource Operations and BC Ministry of Environment, 1-40p. http://www.sfu.ca/personal/dallen/Chemical%20Indicators%20of%20SWI_Final.pdf.

  62. Koussis, A. D., Georgopoulou, E., Kotronarou, A., Lalas, D. P., Restrepo, P., Destouni, G., Prieto, C., Rodriguez, J. J., Rodriguez-Mirasol, J., Cordero, T., & Gomez-Gotor, A. (2010). Cost-efficient management of coastal aquifers via recharge with treated wastewater and desalination of brackish groundwater: general framework. Hydrological Sciences Journal, 55(7), 1217–1233. doi:10.1080/02626667.2010.512467.

  63. Kumar, P. J. S. (2014). Evolution of groundwater chemistry in and around Vaniyambadi industrial area: differentiating the natural and anthropogenic sources of contamination. Chemie der Erde - Geochemistry. doi:10.1016/j.chemer.2014.02.002.

  64. Lamei, A., van der Zaag, P., & von Münch, E. (2009). Water resources management to satisfy high water demand in the arid Sharm El Sheikh on the Red Sea, Egypt. Desalination & Water treatment, 1, 299–306.

  65. Langmuir, D. (1997). Aqueous environmental geochemistry. New Jersey: Prentice Hall, Inc.

  66. Li, P., Qian, H., Wu, J., & Ding, J. (2010). Geochemical modeling of groundwater in southern plain area of Pengyang County Ningxia China. Journal of Water Science and Engineering, 3(3), 282–291.

  67. Luo, Q. B., Kang, W. D., Xie, Y. L., & Zhao, B. F. (2008). Groundwater hydrogeochemistry simulation in the Jingbian area of the Luohe of Cretaceous. Ground Water, 30(6), 22–24.

  68. Lyons, W. B., Tyler, S. W., Gaudette, H. E., & Long, D. T. (1995). The use of strontium isotopes in determining groundwater mixing and brine fingering in a playa spring zone Lake Tyrrell Australia. Journal of Hydrology, 167, 225–239.

  69. Miller, J. E. (2003). Review of water resources and desalination technologies SAND 2003–800.

  70. Mondal, N. C., & Singh, V. P. (2011). Hydrochemical analysis of salinization for a tannery belt in Southern India. Journal of Hydrology, 405, 235–247.

  71. MSEA. (2006). Law 4 for the protection of the environment. http://www.eeaa.gov.eg/English/main/about.asp, 2006.

  72. Omara, S. (1959). The geology of Sharm El-Sheikh sandstone Sinai Egypt. Egypt Journal Geology, 3(1), 107–121.

  73. Park, S. C., Yun, S. T., Chae, G. T., Yoo, I. S., Shin, K. S., Heo, C. H., & Lee, S. K. (2005). Regional hydrochemical study on salinization of coastal aquifers, western coastal area of South Korea. Journal of Hydrology, 313, 182–194.

  74. Piper’s, A. M. (1953). A graphic procedure in the geochemical interpretation of water analysis. American Geophysical Union Transactions, 25(105), 914–923.

  75. Plummer, L. N., Prestemon, E. C., & Parkhurst, D. L. (1992). NETPATH: an interactive code for interpreting NET geochemical reactions from chemical and isotopic data along a flow PATH in Kharaka Y, Maest A.S., eds. International Symposium on Water-rock Interaction 7th Park City Utah July 9–23, 1992 Proceedings: Rotterdam, Balkema, p. 239–242.

  76. Qian, H., & Ma, Z. Y. (2005). Hydrogeochemistry. Beijing: Geological Publishing House.

  77. Rainwater, F. H., & Thatcher, L. L. (1960). Methods for collection and analysis of water samples. U.S. Geological survey water supply, paper 1454. Washington: USGS.

  78. Research Institute for Groundwater (RIGWA), (1988). Hydrogeological map of Egypt (Scale 1:200,000).

  79. Said, R. (1962). The geology of Egypt (p. 377). Amsterdam and New York: Elsevier.

  80. Shata, A. I. (1969). Geology of Wadi Khashaby area Sharm El Sheikh area Southern Sinai Egypt with special reference to kaolinite deposits Dissertation, Ain Shams University.

  81. Shaw, D. M. (1961). Element distribution laws in geochemistry. Geochemical Cosmochimicam Acta, 23, 116–134.

  82. Sherif, M. I. (2011). Petrology, tectonic evolution and radioactivity of granitic rocks Sharm El-Sheikh area, South Sinai, Egypt. M.Sc. Thesis, Faculty of Science, Tanta University, Egypt.

  83. Sherif, M. I., Ghoneim, M. F., Heikal, M. T., & El Dosuky, B. T. (2013). Petrogenesis of granites, Sharm El-Sheikh Area, South Sinai, Egypt petrological constrains and tectonic evolution. Mineralogy and Petrology, 107, 765–783.

  84. Sinclair, A. J. (1974). Selection of threshold values in geochemical data using probability graphs. Journal of Geochemical Exploration, 3, 129–149.

  85. Sinclair, A. J. (1976). Application of probability graphs in mineral exploration. Association of exploration Geochemists, Rexdale, Ontario, Special Volume No. 4.

  86. Starinsky, A., Bielski, M., Ecker, A., & Steinitz, G. (1983). Tracing the origin of salts in groundwater by Sr isotopic composition (the crystalline complex of the southern Sinai Egypt). Isotope Geoscience, 1, 257–267.

  87. Stern, R. J. (1994). Arc assembly and continental collision in the Neoproterozoic East African Orogen: implications for the consolidation of Gondwanaland. Annual Review of Earth and Planetary Science, 22, 319–351.

  88. Strathmann, H. (2004). Ion-exchange membrane separation processes membrane science and technology series 9. Amsterdam 19: Elsevier.

  89. Subramani, T., Elango, L., & Damodarasamy, S. R. (2005). Groundwater quality and its suitability for drinking and agricultural use in Chithar River Basin, Tamil Nadu India. Environmental Geology, 47, 1099–1110.

  90. Sulin, V. A. (1948). Condition of formation, principals of classification and constituents natural waters (p. 215). Moscow: Leningrad Academic Science, USSR.

  91. Tanaskovic, I., Golobocanin, D., & Miljevic, N. (2012). Multivariate statistical analysis of hydrochemical and radiological data of Serbian spa waters. Journal Geochemical Exploration, 112, 226–234.

  92. UNEP/PERSGA, (1997). Assessment of land-based sources and activities affecting the marine environment in the Red sea and Gulf of Aden, UNEP Regional Seas Report and Studies No 166, United Nations Environmental program, http://www.unep.ch/regionalseas/main/persga/redthreat.html.

  93. UNESCO, (2008). World Water Assessment Program: facts and figures. http://www.unesco.org/water/wwap/facts_figures/.

  94. Vengosh, A. (2014). Salinization and saline environments. Environmental geochemistry, vol. 9, Sherwood Lollar, B. (ed.), Treatise in geochemistry second edition. Executive Editors: Holland, H.D. and Turekian, K.T., 11 (2013) 325–378.

  95. Vengosh, A., Spivack, A. J., Artzi, Y., & Ayalon, A. (1999). Geochemical and boron, strontium, and oxygen isotopic constraints on the origin of the salinity in groundwater from the Mediterranean coast of Israel. Water Resources Research, 35, 1877–1894.

  96. Walha, K., Ben Amar, R., Firdaous, L., Quéméneur, F., & Jaouen, P. (2007). Brackish groundwater treatment by nanofiltration, reverse osmosis and electrodialysis in Tunisia: performance and cost comparison. Desalination, 207, 95–106.

  97. Wheater, H. S., Mathias, S. A., & Li, X. (2010). Groundwater modelling in arid and semi-arid areas. Cambridge University Press. ISBN-10: 0521111293; ISBN-13: 9780521111294.

  98. WHO. (2011). WHO guidelines for drinking-water quality (IVthth ed., p. 340). Geneva: World Health Organization.

  99. Yoshioka, K. (2001). KyPlot Program Version 2.0. www.phy.gonzaga. edu. Cited 3 April 2007.

Download references

Acknowledgments

Acknowledgement goes to the Egyptian Scientific Technology Development Funding (STDF) for technical support and for funding laboratory and field work during the project. Thanks to the two anonymous reviewers and the editorial board of the Journal of Water, Air, & Soil Pollution who provided their constructive comments to improve the article. We are thankful to them.

Author information

Correspondence to Heba Isawi.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(XLSX 23 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Isawi, H., El-Sayed, M.H., Eissa, M. et al. Integrated Geochemistry, Isotopes, and Geostatistical Techniques to Investigate Groundwater Sources and Salinization Origin in the Sharm EL-Shiekh Area, South Sinia, Egypt. Water Air Soil Pollut 227, 151 (2016). https://doi.org/10.1007/s11270-016-2848-5

Download citation

Keywords

  • Hydrogeochemistry
  • Isotopes
  • Seawater intrusion
  • Reject brine water
  • Seawater Mixing Index
  • Factorial analysis
  • Sharm El-Shiekh