Advertisement

Synergy Between Diazinon and Nonylphenol in Toxicity During the Early Development of the Rhinella arenarum Toad

  • Carolina Mariel Aronzon
  • Gabriela Verónica Svartz
  • Cristina Silvia Pérez CollEmail author
Article
  • 157 Downloads

Abstract

Diazinon is an extensively applied organophosphate pesticide, and nonylphenol is one of the major degradation products of nonylphenol polyethoxylates which are commonly used as surfactant in pesticide formulations. Both pollutants are widely distributed and often coexist in agroecosystems, where they might cause toxic effects to wild biota. This study assessed single and joint toxicity of binary mixtures of these organic compounds on the early development of Rhinella arenarum by means of a standardized test. Joint toxicity of diazinon/nonylphenol mixtures were assessed in embryos and larvae exposed to three different proportions at different exposure times. Embryo and larval toxicity was time-dependent, and larvae were significantly more sensitive than embryos to both compounds. For both embryos and larvae, nonylphenol was between 11 and 18 times more toxic than diazinon. Joint toxicity of the chemicals showed a tendency to be significantly higher than the predicted by additivity effects highlighting the threat that diazinon/nonylphenol mixtures represent for Rhinella arenarum populations.

Keywords

Amphibians Diazinon Joint toxicity Nonylphenol Synergism 

Notes

Acknowledgments

Cristina S. Pérez Coll, Carolina Aronzon, and Gabriela Svartz are members of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina, and Universidad Nacional de San Martín (UNSAM), Argentina. We are grateful to Paola Babay and Damián Marino for their valuable help in the analysis and quantification of nonylphenol and diazinon test solutions.

References

  1. American Public Health Association, American Water Works Association & Water Pollution Control Federation (2005). Standard methods for the examination of water and wastewaters, In A. P. H. Association (Ed.), (p. 1200 pp). Washington DC.Google Scholar
  2. Aronzon, C., Sandoval, M., Herkovits, J., & Pérez-Coll, C. (2011a). Stage-dependent toxicity of 2,4-dichlorophenoxyacetic on the embryonic development of a South American toad. Rhinella arenarum, Environmental Toxicology, 26, 373–381.CrossRefGoogle Scholar
  3. Aronzon, C. M., Babay, P. A., & Pérez Coll, C. S. (2014a). Developmental toxicity and risk assessment of nonylphenol to the South American toad. Rhinella arenarum, Environmental Toxicology and Pharmacology, 38, 634–642.CrossRefGoogle Scholar
  4. Aronzon, C. M., Marino, D. J., Ronco, A. E., & Pérez Coll, C. S. (2014b). Differential toxicity and uptake of diazinon on embryo-larval development of Rhinella arenarum. Chemosphere, 100, 50–56.CrossRefGoogle Scholar
  5. Aronzon, C. M., Sandoval, M. T., Herkovits, J., & Pérez-Coll, C. S. (2011b). Stage-dependent susceptibility to copper in Rhinella arenarum embryos and larvae. Environmental Toxicology and Chemistry, 30, 2771–2777.CrossRefGoogle Scholar
  6. Arukwe, A., Thibaut, R., Ingebrigtsen, K., Celius, T., Goksøyr, A., & Cravedi, J. P. (2000). In vivo and in vitro metabolism and organ distribution of nonylphenol in Atlantic salmon (Salmo salar). Aquatic Toxicology, 49, 289–304.CrossRefGoogle Scholar
  7. ASTM (2004). Standard guide for conducting the frog embryo teratogenesis assay-Xenopus (FETAX).American Society for Testing and Materials. Standards on aquatic toxicology and hazard evaluation. E 1439 – 98 (2004), Philadelphia, PA, pp. 1-16.Google Scholar
  8. Babay, P. A., Itria, R. F., Ale, R., Emiliano, E., Becquart, E. T., & Gautier, E. A. (2014). Ubiquity of endocrine disruptors nonylphenol and its mono- and di-ethoxylates in freshwater, sediments, and biosolids associated with high and low density populations of Buenos Aires, Argentina. CLEAN-Soil, Air, Water, 42, 731–737.CrossRefGoogle Scholar
  9. Babay, P. A., Romero-Ale, E. E., Itria, R. F., Becquart, E. T., Thiele, B., & Batistoni, D. A. (2008). Simplified determination of lipophilic metabolites of nonylphenol ethoxylates: method development and application in aqueous samples from Buenos Aires, Argentina. Journal of Environmental Monitoring, 16, 443–452.CrossRefGoogle Scholar
  10. Backhaus, T., & Faust, M. (2012). Predictive environmental risk assessment of chemical mixtures: a conceptual framework. Environmental Science and Technology, 46, 2564–2573.CrossRefGoogle Scholar
  11. Banaee, M., Sureda, A., Mirvaghefi, A. R., & Ahmadi, K. (2011). Effects of diazinon on biochemical parameters of blood in rainbow trout (Oncorhynchus mykiss). Pesticide Biochemistry and Physiology, 99, 1–6.CrossRefGoogle Scholar
  12. Barata, C., Baird, D. J., Nogueira, A. J. A., Soares, A. M. V. M., & Riva, M. C. (2006). Toxicity of binary mixtures of metals and pyrethroid insecticides to Daphnia magna Straus. Implications for multi-substance risks assessment. Aquatic Toxicology, 78, 1–14.CrossRefGoogle Scholar
  13. Berryman, D., Houde, F., DeBlois, C., & O’Shea, M. (2004). Nonylphenolic compounds in drinking and surface waters downstream of treated textile and pulp and paper effluent: a survey and preliminary assessment of their potential effects on public health and aquatic life. Chemosphere, 56, 247–255.CrossRefGoogle Scholar
  14. Bionda, C., Lajmanovich, R., Salas, N., Martino, A., & di Tada, I. (2013). Population demography in Rhinella arenarum (Anura: Bufonidae) and Physalaemus biligonigerus (Anura: Leiuperidae) in agroecosystems in the province of Córdoba, Argentina. International Journal of Tropical Biology and Conservation, 61, 1389–1400.Google Scholar
  15. Canadian Council on Animal Care in Science (1993). Guide to the care and use of experimental animals, p. 298. http://www.ccac.ca/Documents/Standards/Guidelines/Experimental_Animals_Vol291.pdf.
  16. De Laender, F., Janssen, R., & De Schamphelaer, K. A. C. (2009). Non-simultaneous ecotoxicity testing of single chemicals and their mixture results in erroneous conclusions about the joint action of the mixture. Chemosphere, 76, 428–432.CrossRefGoogle Scholar
  17. Del Conte, E., & Sirlin, L. (1951). The firts stages of Bufo arenarum development. Acta Zool Lilloana, 12, 495–499.Google Scholar
  18. Edginton, A. N., Sheridan, P. M., Stephenson, G. R., Thompson, D. G., & Boermans, H. J. (2004). Comparative effects of pH and Vision® herbicide on two life stages of four anuran amphibian species. Environmental Toxicology and Chemistry, 23, 815–822.CrossRefGoogle Scholar
  19. Ezemonye, L., & Tongo, I. (2010). Acute toxic effects of endosulfan and diazinon pesticides on adult amphibians (Bufo regularis). Journal of Environmental Chemistry and Ecotoxicology, 2, 73–78.Google Scholar
  20. Farré, M. l., Pérez, S., Kantiani, L., & Barceló, D. (2008). Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. TrAC, Trends in Analytical Chemistry, 27, 991–1007.CrossRefGoogle Scholar
  21. Fulton, M. H., & Key, P. B. (2001). Acetylcholinesterase inhibition in estuarine fish and invertebrates as an indicator of organophophorus insecticide exposure and effects. Environmental Toxicology and Chemistry, 20, 37–45.CrossRefGoogle Scholar
  22. Gindi, T., & Knowland, J. (1979). The activity of cholinesterases during the development of Xenopus laevis. Journal of Embryology and Experimental Morphology, 51, 209–215.Google Scholar
  23. Greulich, K., & Pflugmacher, S. (2003). Differences in susceptibility of various life stages of amphibians to pesticide exposure. Aquatic Toxicology, 65, 329–336.CrossRefGoogle Scholar
  24. Hamm, J. T., & Hinton, D. E. (2000). The role of development and duration of exposure to the embryotoxicity of diazinon. Aquatic Toxicology, 48, 403–418.CrossRefGoogle Scholar
  25. Howe, C. M., Berrill, M., Pauli, B. D., Helbing, C. C., Werry, K., & Veldhoen, N. (2004). Toxicity of glyphosate-based pesticides to four North American frog species. Environmental Toxicology and Chemistry, 23, 1928–1938.CrossRefGoogle Scholar
  26. Hutler Wolkowicz, I. R., Herkovits, J., & Pérez Coll, C. S. (2014). Stage-dependent toxicity of bisphenol-a on Rhinella arenarum (Anura, Bufonidae) embryos and larvae. Environmental Toxicology, 29, 146–154.CrossRefGoogle Scholar
  27. International Agency for Research on Cancer (2015). Evaluation of five organophosphate insecticides and herbicides. In World Health Organization (Ed.), Lyon, France, IARC Monographs.Google Scholar
  28. IUCN (2015). http://www.iucnredlist.org, in The IUCN Red List of Threatened Species (Ed.), Version 2015-4. Downloaded on 19 November 2015.
  29. Li, W. E. I., Wei-Wei, S. H. A. O., Guo-Hua, D. I. N. G., Xiao-Li, F. A. N., Miao-Ling, Y. U., & Zhi-Hua, L. I. N. (2014). Acute and joint toxicity of three agrochemicals to Chinese tiger frog (Hoplobatrachus chinensis) tadpoles. Zoological Research, 35, 272–279.Google Scholar
  30. Mann, R. M., & Bidwell, J. R. (1999). The toxicity of glyphosate and several glyphosate formulations to four species of southwestern Australian frogs. Archives of Environmental Contamination and Toxicology, 36, 193–199.CrossRefGoogle Scholar
  31. Mann, R. M., & Bidwell, J. R. (2000). Application of the FETAX protocol to assess the developmental toxicity of nonylphenol ethoxylate to Xenopus laevis and two Australian frogs. Aquatic Toxicology, 51, 19–29.CrossRefGoogle Scholar
  32. Mann, R. M., Hyne, R. V., Choung, C. B., & Wilson, S. P. (2009). Amphibians and agricultural chemicals: review of the risks in a complex environment. Environmental Pollution, 157, 2903–2927.CrossRefGoogle Scholar
  33. Marking, L. L. (1977). Method for assessing additive toxicity of chemical mixtures. Aquatic toxicology and hazard evaluation (ASTM) American Society for Testing and Materials.Google Scholar
  34. Modra, H., Vrskova, D., Macova, S., Kohoutkova, J., Hajslova, J., Haluzova, I., & Svobodova, Z. (2011). Comparison of diazinon toxicity to embryos of Xenopus laevis and Danio rerio; degradation of diazinon in water. Bulletin of Environmental Contamination and Toxicology, 86, 601–604.CrossRefGoogle Scholar
  35. Natale, G. S. (2006). Análisis ecotoxicológico de una comunidad de anuros de la Región Pampeana - Efecto del Cr(VI) sobre embriones y larvas de distintas especies de una taxocomunidad., Tesis de Doctorado. Facultad de Ciencias Naturales y Museo. Universidad Nacional de La Plata, La Plata, p. 312.Google Scholar
  36. Naylor, G. C. (1995). Environmental fate and safety of nonylphenol ethoxylates. Textile Chemist and Colorist, 27, 29–33.Google Scholar
  37. Nowell, L. H., Norman, J. E., Moran, P. W., Martin, J. D., & Stone, W. (2014). Pesticide toxicity index—a tool for assessing potential toxicity of pesticide mixtures to freshwater aquatic organisms. Science of the Total Environment, 476–477, 144–157.CrossRefGoogle Scholar
  38. Peltzer, P. M., Lajmanovich, R. C., Sanchez, L. C., Attademo, A. M., Junges, C. M., Bionda, C. L., Martino, A. L., & Bassó, A. (2011). Morphological abnormalities in amphibian populations from the mid-eastern region of Argentina. Herpetological Conservation and Biology, 6, 432–442.Google Scholar
  39. Soares, A., Guieysse, B., Jefferson, B., Cartmell, E., & Lester, J. N. (2008). Nonylphenol in the environment: a critical review on occurrence, fate, toxicity and treatment in wastewaters. Environment International, 34, 1033–1049.CrossRefGoogle Scholar
  40. Sparling, D. W., & Fellers, G. (2007). Comparative toxicity of chlorpyrifos, diazinon, malathion and their oxon derivatives to larval Rana boylii. Environmental Pollution, 147, 535–539.CrossRefGoogle Scholar
  41. Sprague, J. B. (1970). Measurement of pollutant toxicity to fish. II Utilizing and applying bioassays results. Water Research, 4, 3–32.CrossRefGoogle Scholar
  42. Spurgeon, D. J., Jones, O. A. H., Dorne, J.-L. C. M., Svendsen, C., Swain, S., & Stürzenbaum, S. R. (2010). Systems toxicology approaches for understanding the joint effects of environmental chemical mixtures. Science of the Total Environment, 408, 3725–3734.CrossRefGoogle Scholar
  43. Sumanadasa, D. M., Wijesinghe, M. R., & Ratnasooriya, W. D. (2008). Effects of diazinon on larvae of the Asian common toad (Bufo melanostictus, Schneider 1799). Environmental Toxicology and Chemistry, 27, 2320–2325.CrossRefGoogle Scholar
  44. Sztrum, A. A., D’Eramo, J. L., & Herkovits, J. (2011). Nickel toxicity in embryos and larvae of the South American toad: effects on cell differentiation, morphogenesis, and oxygen consumption. Environmental Toxicology and Chemistry, 30, 1146–1152.CrossRefGoogle Scholar
  45. US EPA (1988). Users guide for a computer program for PROBIT analysis of data from acute and short-term chronic toxicity test with aquatic organisms’, Biological Methods, Environmental Monitoring and Support Lab., United States Environmental Protection Agency.Google Scholar
  46. van der Geest, H. G., Greve, G. D., Boivin, M.-E., Kraak, M. H. S., & van Gestel, C. A. M. (2000). Mixture toxicity of copper and diazinon to larvae of the mayfly (Ephoron virgo) judging additivity at different effect levels. Environmental Toxicology and Chemistry, 19, 2900–2905.CrossRefGoogle Scholar
  47. Wake, D. B., & Vredenburg, V. T. (2008). Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proceedings of the National Academy of Sciences, 105, 11466–11473.CrossRefGoogle Scholar
  48. Warne, M. S. J. (Ed.). (2003). A review of the ecotoxicity of mixtures, approaches to, and recommendations for their management. Australia: Adelaide.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Carolina Mariel Aronzon
    • 1
    • 2
  • Gabriela Verónica Svartz
    • 1
    • 2
  • Cristina Silvia Pérez Coll
    • 1
    • 2
    Email author
  1. 1.Instituto de Investigación e Ingeniería Ambiental (3iA)Universidad Nacional de San MartínSan MartínArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y TécnicasSan MartínArgentina

Personalised recommendations