Photocatalytic Treatment of Olive Oil Mill Wastewater Using TiO2 and Fe2O3 Nanomaterials

  • V. Nogueira
  • I. Lopes
  • T. A. P. Rocha-Santos
  • F. Gonçalves
  • A. C. Duarte
  • R. Pereira


The olive oil industry produces a highly complex wastewater, known as olive oil mill wastewater (OOMW), which represents a relevant environmental problem for the Mediterranean region. Several physicochemical, biological and combined treatments have been tested to deal with this industrial externality but none was totally effective in reducing its toxicity for species inhabiting the receiving freshwater systems. Within this framework, nanotechnology appears as a promising research area, offering new approaches for the treatment of wastewaters based on the enhanced physical and chemical properties of nanomaterials (NMs). In this context, this work aimed to investigate the treatability of OOMW through several treatments involving advanced oxidation processes plus the use of two nanomaterials as catalysts (UV/H2O2, UV/TiO2, UV/Fe2O3, UV/TiO2/H2O2 and UV/Fe2O3/H2O2). The concentrations of the catalyst and of the oxidant agent were also investigated. The results obtained showed that photodegradation treatments combining TiO2 or Fe2O3 NMs with H2O2 were the most efficient. Regarding the OOMW toxicity to Vibrio fischeri, it was significantly reduced with the following treatments: UV/TiO2/H2O2 and UV/Fe2O3/H2O2. However, the highest reduction recorded for this parameter was obtained in the treatment with UV/H2O2. The use of NMs combined with H2O2 showed a great potential for removing phenols from OOMW, which have been pointed out as the major toxic compounds of this wastewater.


Olive oil mill wastewater (OOMW) Nano-TiO2 and nano-Fe2O3 Photocatalytic degradation Organic compounds 



This work was developed under the Foundation for Science and Technology scope research grants (SFRH/BPD/65410/2009 and SFRH/BD/65782/2009), and by national funds (OE) through the Foundation for Science and Technology and Ministério da Ciência, Tecnologia e Ensino Superior (MCTES) (, within the CESAM’s strategic programme (UID/AMB/50017/2013).


  1. Ahmadi, M., Vahabzadeh, F., Bonakdarpour, B., Mofarrah, E., & Mehranian, M. (2005). Application of the central composite design and response surface methodology to the advanced treatment of olive oil processing wastewater using Fenton’s peroxidation. Journal of Hazardous Materials, 123(1–3), 187–195. doi: 10.1016/j.jhazmat.2005.03.042.CrossRefGoogle Scholar
  2. Ahmed, S., Rasul, M. G., Martens, W. N., Brown, R., & Hashib, M. a. (2010). Advances in heterogeneous photocatalytic degradation of phenols and dyes in wastewater: a review. Water, Air, & Soil Pollution, 215(1-4), 3–29. doi: 10.1007/s11270-010-0456-3.CrossRefGoogle Scholar
  3. Ahmed, B., Limem, E., Abdel-Wahab, A., & Nasr, B. (2011). Photo-Fenton treatment of actual agro-industrial wastewaters. Industrial & Engineering Chemistry Research, 50, 6673–6680. 10.1021/ie200266d. Accessed 22 March 2014.
  4. Alnaizy, R., & Akgerman, A. (2000). Advanced oxidation of phenolic compounds. Advances in Environmental Research, 4(3), 233–244. doi: 10.1016/S1093-0191(00)00024-1.CrossRefGoogle Scholar
  5. ASTM. (1994). Standard test methods for chemical oxygen demand of water. Report D 1252–88. In Annual Book of ASTM Standards Philadelphia, USA: American Society for Testing and Material. Google Scholar
  6. Azur Environmental. Microtox Omnio Manual. (A. Environmental, Ed.) (1998). Carlsbad, CA, USA.Google Scholar
  7. Badawy, M., Gohary, F., Ghaly, M., & Ali, M. (2009). Enhancement of olive mill wastewater biodegradation by homogeneous and heterogeneous photocatalytic oxidation. Journal of Hazardous Materials, 169(1-3), 673–9. doi: 10.1016/j.jhazmat.2009.04.038.CrossRefGoogle Scholar
  8. Cañizares, P., Lobato, J., Paz, R., Rodrigo, M. A., & Sáez, C. (2007). Advanced oxidation processes for the treatment of olive-oil mills wastewater. Chemosphere, 67(4), 832–838. doi: 10.1016/j.chemosphere.2006.10.064.CrossRefGoogle Scholar
  9. Chatzisymeon, E., Stypas, E., Bousios, S., Xekoukoulotakis, N. P., & Mantzavinos, D. (2008). Photocatalytic treatment of black table olive processing wastewater. Journal of Hazardous Materials, 154(1–3), 1090–1097. doi: 10.1016/j.jhazmat.2007.11.014.CrossRefGoogle Scholar
  10. Chiou, C.-H., Wu, C.-Y., & Juang, R.-S. (2008). Influence of operating parameters on photocatalytic degradation of phenol in UV/TiO2 process. Chemical Engineering Journal, 139(2), 322–329. doi: 10.1016/j.cej.2007.08.002.CrossRefGoogle Scholar
  11. Chirita, M., & Grozescu, I. (2009). Fe2O3–nanoparticles, physical properties and their photochemical and photoelectrochemical applications. Chem. Bull., 54(68), 1–8. Accessed 8 August 2013.
  12. Chong, M. N., Jin, B., Chow, C. W. K., & Saint, C. (2010). Recent developments in photocatalytic water treatment technology: a review. Water Research, 44(10), 2997–3027. doi: 10.1016/j.watres.2010.02.039.CrossRefGoogle Scholar
  13. Curri, M. L., Petrella, A., Striccoli, M., Cozzoli, P. D., Cosma, P., & Agostiano, A. (2003). Photochemical sensitisation process at photosynthetic pigments/Q-sized colloidal semiconductor hetero-junctions. Synthetic Metals, 139(3), 593–596. doi: 10.1016/S0379-6779(03)00318-7.CrossRefGoogle Scholar
  14. Dai, K., Chen, H., Peng, T., Ke, D., & Yi, H. (2007). Photocatalytic degradation of methyl orange in aqueous suspension of mesoporous titania nanoparticles. Chemosphere, 69(9), 1361–7. doi: 10.1016/j.chemosphere.2007.05.021.CrossRefGoogle Scholar
  15. Delgado, G. C. (2010). Economics and governance of nanomaterials: potential and risks. Technology in Society, 32(2), 137–144. doi: 10.1016/j.techsoc.2010.03.002.CrossRefGoogle Scholar
  16. El Hajjouji, H., Barje, F., Pinelli, E., Bailly, J. R., Richard, C., Winterton, P., et al. (2008). Photochemical UV/TiO2 treatment of olive mill wastewater (OMW). Bioresource Technology, 99(15), 7264–7269. doi: 10.1016/j.biortech.2007.12.054.CrossRefGoogle Scholar
  17. Esplugas, S., Giménez, J., Contreras, S., Pascual, E., & Rodríguez, M. (2002). Comparison of different advanced oxidation processes for phenol degradation. Water research, 36(4), 1034–42.
  18. Ferreira, F., Carvalho, L., & Pereira, R. (2008). Biological and photo-Fenton treatment of olive oil mill wastewater. Global Nest J, 10(3), 419–425. Accessed 11 July 2013
  19. Friedmann, D., Mendive, C., & Bahnemann, D. (2010). TiO2 for water treatment: parameters affecting the kinetics and mechanisms of photocatalysis. Applied Catalysis B: Environmental, 99(3–4), 398–406. doi: 10.1016/j.apcatb.2010.05.014.CrossRefGoogle Scholar
  20. Gaikowski, M. P., Rach, J. J., & Ramsay, R. T. (1999). Acute toxicity of hydrogen peroxide treatments to selected lifestages of cold-, cool-, and warmwater fish. Aquaculture, 178(3-4), 191–207. doi: 10.1016/S0044-8486(99)00123-4.CrossRefGoogle Scholar
  21. Garcia, J. C., Oliveira, J. L., Silva, A. E. C., Oliveira, C. C., Nozaki, J., & de Souza, N. E. (2007). Comparative study of the degradation of real textile effluents by photocatalytic reactions involving UV/TiO2/H2O2 and UV/Fe2+/H2O2 systems. Journal of Hazardous Materials, 147(1–2), 105–110. doi: 10.1016/j.jhazmat.2006.12.053.CrossRefGoogle Scholar
  22. Gaya, U. I., & Abdullah, A. H. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 9(1), 1–12. doi: 10.1016/j.jphotochemrev.2007.12.003.CrossRefGoogle Scholar
  23. Gernjak, W., Maldonado, M. I., Malato, S., Cáceres, J., Krutzler, T., Glaser, A., & Bauer, R. (2004). Pilot-plant treatment of olive mill wastewater (OMW) by solar TiO2 photocatalysis and solar photo-Fenton. Solar Energy, 77(5), 567–572. doi: 10.1016/j.solener.2004.03.030.CrossRefGoogle Scholar
  24. Ghaly, M. Y., Härtel, G., Mayer, R., & Haseneder, R. (2001). Photochemical oxidation of p-chlorophenol by UV/H2O2 and photo-Fenton process. A comparative study. Waste management (New York, N.Y.), 21(1), 41–7.
  25. Ghaly, M. Y., Jamil, T. S., El-Seesy, I. E., Souaya, E. R., & Nasr, R. A. (2011). Treatment of highly polluted paper mill wastewater by solar photocatalytic oxidation with synthesized nano TiO2. Chemical Engineering Journal, 168(1), 446–454. doi: 10.1016/j.cej.2011.01.028.CrossRefGoogle Scholar
  26. Giwa, A., Nkeonye, P. O., Bello, K. A., & Kolawole, K. A. (2012). Photocatalytic decolourization and degradation of C. I. Basic Blue 41 using TiO2 nanoparticles. Journal of Environmental Protection, 3, 1063–1069.CrossRefGoogle Scholar
  27. Guo, Z., Ma, R., & Li, G. (2006). Degradation of phenol by nanomaterial TiO2 in wastewater. Chemical Engineering Journal, 119(1), 55–59. doi: 10.1016/j.cej.2006.01.017.CrossRefGoogle Scholar
  28. Han, H., & Bai, R. (2009). Buoyant photocatalyst with greatly enhanced visible-light activity prepared through a low temperature hydrothermal method. Industrial & Engineering Chemistry Research, 48(6), 2891–2898. doi: 10.1021/ie801362a.CrossRefGoogle Scholar
  29. Hanafi, F., Assobhei, O., & Mountadar, M. (2010). Detoxification and discoloration of Moroccan olive mill wastewater by electrocoagulation. Journal of hazardous materials, 174(1-3), 807–12. doi: 10.1016/j.jhazmat.2009.09.124.CrossRefGoogle Scholar
  30. Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995). Environmental applications of semiconductor photocatalysis. Chemical Reviews, 95(1), 69–96. doi: 10.1021/cr00033a004.CrossRefGoogle Scholar
  31. Hund-Rinke, K., & Simon, M. (2006). Ecotoxic effect of photocatalytic active nanoparticles (TiO2) on Algae and Daphnids. Environmental Science and Pollution Research, 13(4), 225–232. doi: 10.1065/espr2006.06.311.CrossRefGoogle Scholar
  32. IOC. (2013). Market Newsletter. International Olive Council. Madrid, (last accessed 14 January 2014)IOC, 2013. Market Newsletter. International Olive Council. Madrid
  33. Jagadale, T., Kulkarni, M., Pravarthana, D., Ramadan, W., & Thakur, P. (2012). Photocatalytic degradation of Azo dyes using Au:TiO < SUB > 2</SUB > <I > γ</I > -Fe < SUB > 2</SUB > O < SUB > 3</SUB>:TiO < SUB > 2</SUB > functional nanosystems. Journal of Nanoscience and Nanotechnology, 12(2), 928–936. doi: 10.1166/jnn.2012.5171.CrossRefGoogle Scholar
  34. Jahagirdar, A. A., Ahmed, M. N. Z., Donappa, N., Nagabhushana, H., & Nagabhushana, B. M. (2011). Solution combustion synthesis and photocatalytic activity of α-Fe 2 O 3 nanopowder. Transactions of the Indian Ceramic Society, 70(3), 159–162. doi: 10.1080/0371750X.2011.10600164.CrossRefGoogle Scholar
  35. Jamil, T. S., Ghaly, M. Y., El-Seesy, I. E., Souaya, E. R., & Nasr, R. A. (2011). A comparative study among different photochemical oxidation processes to enhance the biodegradability of paper mill wastewater. Journal of hazardous materials, 185(1), 353–8. doi: 10.1016/j.jhazmat.2010.09.041.CrossRefGoogle Scholar
  36. Justino, C. I., Duarte, K., Loureiro, F., Pereira, R., Antunes, S. C., Marques, S. M., et al. (2009). Toxicity and organic content characterization of olive oil mill wastewater undergoing a sequential treatment with fungi and photo-Fenton oxidation. Journal of Hazardous Materials, 172(2–3), 1560–1572. doi: 10.1016/j.jhazmat.2009.08.028.CrossRefGoogle Scholar
  37. Justino, C., Marques, A., Duarte, K., Duarte, A., Pereira, R., Rocha-Santos, T., & Freitas, A. (2010). Degradation of phenols in olive oil mill wastewater by biological, enzymatic, and photo-Fenton oxidation. Environmental Science and Pollution Research, 17(3), 650–656. doi: 10.1007/s11356-009-0256-8.CrossRefGoogle Scholar
  38. Justino, C., Pereira, R., Freitas, A., Rocha-Santos, T., Panteleitchouk, T., & Duarte, A. (2012). Olive oil mill wastewaters before and after treatment: a critical review from the ecotoxicological point of view. Ecotoxicology, 21(2), 615–629. doi: 10.1007/s10646-011-0806-y.CrossRefGoogle Scholar
  39. Kallel, M., Belaid, C., Boussahel, R., Ksibi, M., Montiel, A., & Elleuch, B. (2009). Olive mill wastewater degradation by Fenton oxidation with zero-valent iron and hydrogen peroxide. Journal of Hazardous Materials, 163(2–3), 550–554. doi: 10.1016/j.jhazmat.2008.07.006.CrossRefGoogle Scholar
  40. Kang, Y. W., Cho, M.-J., & Hwang, K.-Y. (1999). Correction of hydrogen peroxide interference on standard chemical oxygen demand test. Water Research, 33(5), 1247–1251. doi: 10.1016/s0043-1354(98)00315-7.CrossRefGoogle Scholar
  41. Kavvadias, V., Doula, M. K., Komnitsas, K., & Liakopoulou, N. (2010). Disposal of olive oil mill wastes in evaporation ponds: effects on soil properties. Journal of Hazardous Materials, 182(1–3), 144–155. doi: 10.1016/j.jhazmat.2010.06.007.CrossRefGoogle Scholar
  42. Khattab, I. A., Ghaly, M. Y., Österlund, L., Ali, M. E. M., Farah, J. Y., Zaher, F. M., & Badawy, M. I. (2012). Photocatalytic degradation of azo dye Reactive Red 15 over synthesized titanium and zinc oxides photocatalysts: a comparative study. Desalination and Water Treatment, 48(1-3), 120–129. doi: 10.1080/19443994.2012.698803.CrossRefGoogle Scholar
  43. Khin, M. M., Nair, A. S., Babu, V. J., Murugan, R., & Ramakrishna, S. (2012). A review on nanomaterials for environmental remediation. Energy & Environmental Science, 5(8), 8075–8109. doi: 10.1039/C2EE21818F.CrossRefGoogle Scholar
  44. Ko, K.-S., & Kong, I. C. (2013). Toxic effects of nanoparticles on bioluminescence activity, seed germination, and gene mutation. Applied microbiology and biotechnology, 98(7), 3295–303. doi: 10.1007/s00253-013-5404-x.CrossRefGoogle Scholar
  45. Lee, E., Lee, H., Kim, Y., Sohn, K., & Lee, K. (2011). Hydrogen peroxide interference in chemical oxygen demand during ozone based advanced oxidation of anaerobically digested livestock wastewater. International Journal of Environmental Science and Technology, 8(2), 381–388. Accessed 11 July 2013
  46. Li, A., Yang, H., & Zhu, Y. (2011). Photo-catalytic degradation of wastewater from straw pulp and paper mill by Fe2O3/UV/H2O2. In International Conference on Computer Distributed Control and Intelligent Environmental Monitoring (pp. 1624–1627). Ieee. doi: 10.1109/CDCIEM.2011.342
  47. Lima, M. J., Leblebici, M. E., Dias, M. M., Lopes, J. C. B., Silva, C. G., Silva, A. M. T., & Faria, J. L. (2014). Continuous flow photo-Fenton treatment of ciprofloxacin in aqueous solutions using homogeneous and magnetically recoverable catalysts. Environmental science and pollution research international. doi: 10.1007/s11356-014-2515-6.Google Scholar
  48. Liu, Y., Chen, X., Li, J., & Burda, C. (2005). Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts. Chemosphere, 61(1), 11–8. doi: 10.1016/j.chemosphere.2005.03.069.CrossRefGoogle Scholar
  49. Lucas, M., & Peres, J. (2009). Removal of COD from olive mill wastewater by Fenton’s reagent: kinetic study. Journal of hazardous materials, 168(2-3), 1253–9. doi: 10.1016/j.jhazmat.2009.03.002.CrossRefGoogle Scholar
  50. Mantzavinos, D., & Kalogerakis, N. (2005). Treatment of olive mill effluents Part I. Organic matter degradation by chemical and biological processes—an overview. Environment international, 31(2), 289–95. doi: 10.1016/j.envint.2004.10.005.CrossRefGoogle Scholar
  51. McNamara, C. J., Anastasiou, C. C., O’Flaherty, V., & Mitchell, R. (2008). Bioremediation of olive mill wastewater. International Biodeterioration & Biodegradation, 61(2), 127–134. doi: 10.1016/j.ibiod.2007.11.003.CrossRefGoogle Scholar
  52. Mert, B., Yonar, T., Yalili Kiliç, M., & Kestioğlu, K. (2010). Pre-treatment studies on olive oil mill effluent using physicochemical, Fenton and Fenton-like oxidations processes. Journal of Hazardous Materials, 174(1–3), 122–128. doi: 10.1016/j.jhazmat.2009.09.025.CrossRefGoogle Scholar
  53. Mulinacci, N., Romani, A., Galardi, C., Pinelli, P., Giaccherini, C., & Vincieri, F. F. (2001). Polyphenolic content in olive oil waste waters and related olive samples. Journal of agricultural and food chemistry, 49(8), 3509–14.
  54. Nagaveni, K., & Sivalingam, G. (2004). Photocatalytic degradation of organic compounds over combustion-synthesized nano-TiO2. Environmental Science & Technology, 38(5), 1600–1604. doi: 10.1021/es034696i. Accessed 8 August 2013.CrossRefGoogle Scholar
  55. Neyens, E., & Baeyens, J. (2003). A review of classic Fenton’s peroxidation as an advanced oxidation technique. Journal of Hazardous materials, 98(1-3), 33–50. doi: 10.1016/S0304-3894(02)00282-0.CrossRefGoogle Scholar
  56. Nogueira, V., Lopes, I., Rocha-Santos, T. A. P., Rasteiro, M. G., Abrantes, N., Gonçalves, F., et al. (2015a). Assessing the ecotoxicity of metal nano-oxides with potential for wastewater treatment. Environmental Science and Pollution Research, 22(17), 13212–13224. doi: 10.1007/s11356-015-4581-9.CrossRefGoogle Scholar
  57. Nogueira, V., Lopes, I., Rocha-Santos, T., Gonçalves, F., & Pereira, R. (2015b). Toxicity of solid residues resulting from wastewater treatment with nanomaterials. Aquatic Toxicology, 165, 172–178. doi: 10.1016/j.aquatox.2015.05.021.CrossRefGoogle Scholar
  58. Oller, I., Malato, S., & Sánchez-Pérez, J. A. (2011). Combination of advanced oxidation processes and biological treatments for wastewater decontamination—a review. The Science of the total environment, 409(20), 4141–66. doi: 10.1016/j.scitotenv.2010.08.061.CrossRefGoogle Scholar
  59. Pandolia, O., Del Rossob, T., Santosa, V. M., de Rezendea, R. S., & Marinkovic, B. A. (2015). Prototyping of photocatalytic microreactor and testing of photodegradation of organic dye. Química Nova, 38(6), 859–863.Google Scholar
  60. Papaphilippou, P. C., Yiannapas, C., Politi, M., Daskalaki, V. M., Michael, C., Kalogerakis, N., et al. (2013). Sequential coagulation–flocculation, solvent extraction and photo-Fenton oxidation for the valorization and treatment of olive mill effluent. Chemical Engineering Journal, 224, 82–88. doi: 10.1016/j.cej.2012.11.047.CrossRefGoogle Scholar
  61. Paraskeva, P., & Diamadopoulos, E. (2006). Technologies for olive mill wastewater (OMW) treatment: a review. Journal of Chemical Technology & Biotechnology, 81(9), 1475–1485. doi: 10.1002/jctb.1553.CrossRefGoogle Scholar
  62. Pavlidou, A., Anastasopoulou, E., Dassenakis, M., Hatzianestis, I., Paraskevopoulou, V., Simboura, N., et al. (2014). Effects of olive oil wastes on river basins and an oligotrophic coastal marine ecosystem: a case study in Greece. The Science of the total environment, 497-498C, 38–49. doi: 10.1016/j.scitotenv.2014.07.088.CrossRefGoogle Scholar
  63. Pera-Titus, M., García-Molina, V., Baños, M. A., Giménez, J., & Esplugas, S. (2004). Degradation of chlorophenols by means of advanced oxidation processes: a general review. Applied Catalysis B: Environmental, 47(4), 219–256. doi: 10.1016/j.apcatb.2003.09.010.CrossRefGoogle Scholar
  64. Pereira, R., Antunes, S. C., Gonçalves, A. M. M., Marques, S. M., Gonçalves, F., Ferreira, F., et al. (2009). The effectiveness of a biological treatment with Rhizopus oryzae and of a photo-Fenton oxidation in the mitigation of toxicity of a bleached kraft pulp mill effluent. Water research, 43(9), 2471–80. doi: 10.1016/j.watres.2009.03.013.CrossRefGoogle Scholar
  65. Poyatos, J., Muñio, M., Almecija, M., Torres, J., Hontoria, E., & Osorio, F. (2010). Advanced oxidation processes for wastewater treatment: state of the art. Water, Air, & Soil Pollution, 205(1), 187–204. doi: 10.1007/s11270-009-0065-1.CrossRefGoogle Scholar
  66. Qiang, Z., Chang, J., & Huang, C. (2002). Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions. Water Research, 36(1), 85–94. Accessed 14 August 2013.
  67. Rivas, F. J., Beltrán, F. J., Gimeno, O., & Frades, J. (2001). Treatment of olive oil mill wastewater by Fenton’s reagent. Journal of Agricultural and Food Chemistry, 49(4), 1873–1880. doi: 10.1021/jf001223b.CrossRefGoogle Scholar
  68. Rizzo, L. (2011). Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment. Water research, 45(15), 4311–40. doi: 10.1016/j.watres.2011.05.035.CrossRefGoogle Scholar
  69. Roig, A., Cayuela, M. L., & Sánchez-Monedero, M. A. (2006). An overview on olive mill wastes and their valorisation methods. Waste Management, 26(9), 960–969. doi: 10.1016/j.wasman.2005.07.024.CrossRefGoogle Scholar
  70. Ruzmanova, I., Stoller, M., & Chianese, A. (2013a). Photocatalytic treatment of olive mill waste water by magnetic core titanium dioxide nanoparticles. CHEMICAL ENGINEERING, 32(2009), 2269–2274. Accessed 25 July 2014
  71. Ruzmanova, I., Ustundas, M., Stoller, M., & Chianese, A. (2013b). Photocatalytic treatment of olive mill waste water by N-doped titanium dioxide nanoparticles under visible light. CHEMICAL ENGINEERING, 32, 2233–2238. Accessed 25 July 2014
  72. Saadi, I., Laor, Y., Raviv, M., & Medina, S. (2007). Land spreading of olive mill wastewater: effects on soil microbial activity and potential phytotoxicity. Chemosphere, 66(1), 75–83. doi: 10.1016/j.chemosphere.2006.05.019.CrossRefGoogle Scholar
  73. Savage, N., & Diallo, M. (2005). Nanomaterials and water purification: opportunities and challenges. Journal of Nanoparticle Research, 7(4-5), 331–342. doi: 10.1007/s11051-005-7523-5.CrossRefGoogle Scholar
  74. Schmidt, L. J., Gaikowski, M. P., & Gingerich, W. H. (2006). Evironmental assessment for the use of hydrogen peroxide in aquaculture for treating external fungal and bacterial diseases of cultured fish and fish eggs. USGS, 54603(608), 180.Google Scholar
  75. Silva, A. M. T., Nouli, E., Xekoukoulotakis, N. P., & Mantzavinos, D. (2007). Effect of key operating parameters on phenols degradation during H2O2-assisted TiO2 photocatalytic treatment of simulated and actual olive mill wastewaters. Applied Catalysis B: Environmental, 73(1–2), 11–22. doi: 10.1016/j.apcatb.2006.12.007.CrossRefGoogle Scholar
  76. Stasinakis, A. (2008). Use of selected advanced oxidation processes (AOPs) for wastewater treatment—a mini review. Global NEST Journal, 10(3), 376–385. Accessed 11 July 2013.
  77. Swetha, S., Santhosh, S. M., & Geetha Balakrishna, R. (2010). Synthesis and comparative study of nano-TiO2 over degussa P-25 in disinfection of water. Photochemistry and Photobiology, 86(3), 628–632. doi: 10.1111/j.1751-1097.2009.00685.x.CrossRefGoogle Scholar
  78. Talinli, I., & Anderson, G. (1992). Interference of hydrogen peroxide on the standard COD test. Water research, 26(I), 107–110. Accessed 16 January 2014
  79. Theron, J., Walker, J. A., & Cloete, T. E. (2008). Nanotechnology and water treatment: applications and emerging opportunities. Critical Reviews in Microbiology, 34(1), 43–69. doi: 10.1080/10408410701710442.CrossRefGoogle Scholar
  80. Twiner, M., Dixon, S., & Trick, C. (2001). Toxic effects of Heterosigma akashiwo do not appear to be mediated by hydrogen peroxide. Limnology and Oceanography, 46(6), 1400–1405. et al_Limnol Oceanography_2001.pdf. Accessed 16 January 2014
  81. Ugurlu, M., & Karaoglu, M. (2010). The photocatalytic degradation of TOC and organic acid from olive mill wastewater by using UV/H2O2/TiO2. Fresenius Environmental Bulletin, 19(12), 2883–2888. Accessed 13 January 2014.
  82. Uğurlu, M., & Kula, I. (2007). Decolourization and removal of some organic compounds from olive mill wastewater by advanced oxidation processes and lime treatment. Environmental science and pollution research international, 14(5), 319–25.
  83. Umar, M., & Aziz, H. (2013). Photocatalytic degradation of organic pollutants in water. In Organic Pollutants - Monitoring, Risk and Treatment. Accessed 4 October 2013
  84. Wiench, K., Wohlleben, W., Hisgen, V., Radke, K., Salinas, E., Zok, S., & Landsiedel, R. (2009). Acute and chronic effects of nano- and non-nano-scale TiO2 and ZnO particles on mobility and reproduction of the freshwater invertebrate Daphnia magna. Chemosphere, 76(10), 1356–1365. doi: 10.1016/j.chemosphere.2009.06.025.CrossRefGoogle Scholar
  85. Xu, P., Zeng, G. M., Huang, D. L., Feng, C. L., Hu, S., Zhao, M. H., et al. (2012). Use of iron oxide nanomaterials in wastewater treatment: a review. The Science of the Total Environment, 424, 1–10. doi: 10.1016/j.scitotenv.2012.02.023.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • V. Nogueira
    • 1
    • 2
  • I. Lopes
    • 1
    • 2
  • T. A. P. Rocha-Santos
    • 2
    • 3
  • F. Gonçalves
    • 1
    • 2
  • A. C. Duarte
    • 2
    • 3
  • R. Pereira
    • 4
    • 5
  1. 1.Department of BiologyUniversity of AveiroAveiroPortugal
  2. 2.CESAM (Centre for Environmental and Marine Studies)University of AveiroAveiroPortugal
  3. 3.Department of ChemistryUniversity of AveiroAveiroPortugal
  4. 4.Department of Biology, Faculty of ScienceUniversity of PortoPortoPortugal
  5. 5.Research (CIIMAR/CIMAR)University of PortoPortoPortugal

Personalised recommendations