Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Bioaccumulation of Lead and Arsenic in Gastropods Inhabiting Salt Marsh Ponds in Coastal Bay of Fundy, Canada

  • 305 Accesses

  • 5 Citations


The Cumberland Marsh Region (CMR), located on the coast of the Bay of Fundy, is a major feeding ground for waterfowl and contains significant coastal wetland systems. In this study, concentrations of lead (Pb) and arsenic (As) were assessed in the bottom sediments of various open water wetlands across the CMR, and gastropods were sampled from the same wetlands to assess bioaccumulation of these non-essential trace elements and the potential for transfer to higher trophic level species. It was predicted that gastropods would have higher concentrations of Pb and As from wetlands with higher concentrations of these elements in sediments. Although wetland sediments and gastropods had elevated Pb and As concentrations, in some cases above the Canadian Sediment Quality Guidelines for the protection of aquatic life, there were no significant correlations between sediment and gastropod trace element concentrations. Gastropod to sediment ratios of Pb and As concentrations were highest in the brackish wetlands, but overall, levels were not of toxicological concern. Wetland chemistries and gastropod physiologies are hypothesized to be driving factors in determining the level to which Pb and As will bioaccumulate and merit careful consideration when developing wetland management strategies.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3


  1. Adler, F. E. W. (1944). Chemical analyses of organs from lead-poisoned Canada geese. Journal of Wildlife Management, 8, 83–85.

  2. Albers, P. H., & Camardese, M. B. (1993). Effects of acidification on metal accumulation by aquatic plants and invertebrates. 2. Wetlands, ponds and small lakes. Environmental Toxicology and Chemistry, 12, 969–976.

  3. Bates, L. M., & Hall, B. D. (2011). Concentrations of methylmercury in invertebrates from wetlands of the Prairie Pothole Region of North America. Environmental Pollution, 160, 153–160.

  4. Boyle, R. W. (1977). Cupriferous bogs in the Sackville area, New Brunswick, Canada. Journal of Geochemical Exploration, 8, 495–527.

  5. Boyle, J. F. (2000). Rapid elemental analysis of sediment samples by isotope source XRF. Journal of Paleolimnology, 23, 213–221.

  6. Budak, G., Aslan, I., Karabulut, A., & Tirasoglu, E. (2006). Analysis of some elements in three Chrysolina (Coleoptera, Chrysomelidae) species by EDXRF spectrometry. Journal of Quantitative Spectroscopy & Radiative Transfer, 101, 195–200.

  7. Canadian Council of Ministers of the Environment. (1999). Canadian sediment quality guidelines for the protection of aquatic life: arsenic. In: Canadian Environmental Quality Guidelines, 1999. Canadian Council of Ministers of the Environment, Winnipeg.

  8. Canadian Council of Ministers of the Environment. (1999). Canadian sediment quality guidelines for the protection of aquatic life: lead. In: Canadian Environmental Quality Guidelines, 1999. Canadian Council of Ministers of the Environment, Winnipeg.

  9. Catsiki, V. A., Bei, F., & Nicolaidou, A. (1994). Size dependent metal concentrations in two marine gastropod species. Netherlands Journal of Aquatic Ecology, 28, 157–165.

  10. Charriau, A., Lesven, L., Gao, Y., Leermakers, M., Baeyens, W., Ouddane, B., & Billon, G. (2011). Trace metal behaviour in riverine sediments: role of organic matter and sulfides. Applied Geochemistry, 26, 80–90.

  11. Chmura, G. L., Coffey, A., & Crago, R. (2001). Variation in surface sediment deposition on salt marshes in the Bay of Fundy. Journal of Coastal Research, 17, 221–227.

  12. Davis, D., & Browne, S. (1996). The natural history of Nova Scotia (Vol. 1-2). UK: The Nova Scotia Museum and Nimbus Publishing, Halifax.

  13. Duan, D., Ran, Y., Cheng, H., Chen, J., & Wan, G. (2013). Contamination trends of trace metals and coupling with algal productivity in sediment cores in Pearl River Delta, South China. Chemosphere, 103, 35–43.

  14. Dummer, T. J. B., Yu, Z. M., Nauta, L., Murimboh, J. D., & Parker, L. (2015). Geostatistical modeling of arsenic in drinking water wells and related toenail arsenic concentrations across Nova Scotia, Canada. Science of the Total Environment, 505, 1248–1258.

  15. Euliss, N. H., Jr., Wrubleski, D. A., & Mushet, D. M. (1999). Wetlands of the prairie region: invertebrate species compositions, ecology, and management. In D. P. Batzer, R. B. Rader, & S. A. Wissinger (Eds.), Invertebrates in freshwater wetlands of North America: ecology and management (pp. 471–514). New York: Wiley.

  16. Fedynich, A. M., Ballard, B. M., McBride, T. J., Estrella, J. A., Garvon, J. M., & Hooper, M. J. (2007). Arsenic, cadmium, copper, lead, and selenium in migrating blue-winged teal (Anas discors L.). Archieves of Environmental Contamination and Toxicology, 53, 662–666.

  17. Franson, J. C., & Pain, D. P. (2011). Lead in birds. In W. N. Beyer & J. P. Meador (Eds.), Second edition environmental contaminants in biota interpreting tissue concentrations (pp. 563–594). Boca Raton: CRC Press Taylor & Francis Group.

  18. Franz, S. O., Schwark, L., Bruchmann, C., Scharf, B., Klingel, R., van Alstine, J. D., Cagatay, N., & Ulgen, U. B. (2006). Results from a multi-disciplinary sedimentary pilot study of tectonic Lake Iznik (NW Turkey)—geochemistry and paleolimnology of the recent past. Journal of Paleolimnology, 35, 715–736.

  19. Glew, J. R. (1988). A portable extruding device for close interval sectioning of unconsolidated core samples. Journal of Paleolimnology, 1, 235–239.

  20. Glew, J. R., Smol, J. P., & Last, W. M. (2001). Sediment core collection and extrusion. In W. M. Last & J. P. Smol (Eds.), Tracking environmental change using lake sediments volume 1: basin analysis, coring, and chronological techniques (pp. 73–105). Dordrecht: Kluwer Academic Publishers.

  21. Gordon, D. C., Jr., Cranford, P. J., & Desplanque, C. (1985). Observations on the ecological importance of salt marshes in the Cumberland Basin, a Macrotidal Estuary in the Bay of Fundy. Estuarine, Coastal and Shelf Science, 20, 205–227.

  22. Gupta, A. (1997). Metal accumulation by riverine and lacustrine populations of Angulyara oxytropis (Benson) (Gastropoda:Viviparidae). Environmental Monitoring and Assessment, 50, 249–254.

  23. Hall, S. L., & Fisher, F. M. (1985). Heavy metal concentrations of duck tissues in relation to ingestion of spent shot. Archieves of Environmental Contamination and Toxicology, 35, 163–172.

  24. Hamilton, S. J. (2004). Review of selenium toxicity in the aquatic food chain. Science of the Total Environment, 326, 1–31.

  25. Health Canada. (2013). Risk management strategy for lead. Government of Canada, Open file.

  26. Heintzman, R. L., Titus, J. E., & Zhu, W. (2015). Effects of roadside deposition on growth and pollutant accumulation by willow (Salix miyabeana). Water, Air, & Soil Pollution, 226, 11.

  27. Hershey, A. E., Shannon, L., Niemi, G. J., Lima, A. R., & Regal, R. R. (1999). Prairie wetlands of south-central Minnesota: effects of drought on invertebrate communities. In D. P. Batzer, R. B. Rader, & S. A. Wissinger (Eds.), Invertebrates in freshwater wetlands of North America: ecology and management (pp. 515–541). New York: Wiley.

  28. Hui, C. A. (2002). Lead distribution throughout soil, flora, and an invertebrate at a wetland skeet range. Journal of Toxicology and Environmental Health, 65, 1093–1107.

  29. Hung, G. A., & Chmura, G. L. (2007). Metal accumulation in surface salt marsh sediments of the Bay of Fundy, Canada. Estuaries and Coasts, 30, 725–734.

  30. Karouna-Renier, N. K., & Sparling, D. W. (2001). Relationships between ambient geochemistry, watershed land-use and trace metal concentrations in aquatic invertebrates living in stormwater treatment ponds. Environmental Pollution, 112, 183–192.

  31. Kennish, M. J. (1994). Pollution in estuaries and coastal marine waters. Journal of Coastal Research, 12, 27–49.

  32. Kim, H. T., & Kim, J. G. (2006). Heavy metal concentrations in the mollusc gastropod, Cipangopaludina chinensis malleata from Upo wetland reflect the level of heavy metals in the sediments. Journal of Ecology and Field Biology, 29, 453–460.

  33. Klassen, R. A., Douma, S. L., Ford, A., Rencz, A., & Grunsky, E. (2009). Geoscience modelling of relative variation in natural arsenic hazard potential in New Brunswick. Geological Survey of Canada, Current Research 2009–7, 9 p.

  34. Krapu, G. L., & Reinecke, K. J. (1992). Foraging ecology and nutrition. In B. D. J. Batt, A. D. Afton, M. G. Anderson, C. D. Ankney, D. H. Johnson, J. A. Kadlec, & G. L. Krapu (Eds.), Ecology management of breeding waterfowl (pp. 1–29). Minneapolis: University of Minnesota Press.

  35. Laing, G. D., Vos, R. D., Vandecasteele, B., Lesage, E., Tack, F. M. G., & Verloo, M. G. (2008). Effect of salinity on heavy metal mobility and availability in intertidal sediments of the Scheldt estuary. Estuarine, Coastal and Shelf Science, 77, 589–602.

  36. Laing, G. D., Rinklebe, J., Vandecasteele, B., Meers, E., & Tack, F. M. G. (2009). Trace metal behaviour in estuarine and riverine floodplain soils and sediment: a review. Science of the Total Environment, 407, 3972–3985.

  37. Liu, X., Colman, S. M., Brown, E. T., Minor, E. C., & Li, H. (2013). Estimation of carbonate, total organic carbon, and biogenic silica content by FTIR and XRF techniques in lacustrine sediments. Journal of Paleolimnology, 50, 387–398.

  38. Mallory, M. L., Blancher, P. J., Weatherhead, P. J., & McNicol, D. K. (1994). Presence or absence of fish as a cue to macroinvertebrate abundance in boreal wetlands. Hydrobiologia, 279(280), 345–351.

  39. Mallory, M. L., Mahon, L., Tomlik, M. D., White, C., Milton, G. R., & Spooner, I. (2015). Colonial marine birds influence island soil chemistry through biotransport of trace elements. Water, Air, & Soil Pollution, 226, 31.

  40. Martin, S. M. (1999). Freshwater snails (Mollusca:Gastropoda) of Maine. Northeastern Naturalist, 6, 39–88.

  41. Meunier, L., Walker, S. R., Wragg, J., Parsons, M. B., Koch, I., Jamieson, H. E., & Reimer, K. J. (2010). Effects of soil composition and mineralogy on the bioaccessibility of arsenic from tailings and soil in gold mine districts of Nova Scotia. Environmental Science and Technology, 44, 2667–2674.

  42. Mitsch, W. J., & Gosselink, J. G. (2015). Wetlands (5th ed.). New Jersey: Wiley.

  43. Penha-Lopes, G., Bartolini, F., Limbu, S., Cannicci, S., Mgaya, Y., Kristensen, E., & Paula, J. (2010). Ecosystem engineering potential of the gastropod Terebraliapalustri (Linnaeus, 1767) in mangrove wastewater wetlands—a controlled mesocosm experiment. Environmental Pollution, 158, 258–266.

  44. Rainbow, P. S. (2002). Trace metal concentrations in aquatic invertebrates: why and so what? Environmental Pollution, 120, 497–507.

  45. Rao, D. V., Swapna, M., Cesareo, R., Brunetti, A., Akatsuka, T., Yuasa, T., Takeda, T., & Gigante, G. E. (2012). Synchrotron-based X-ray fluorescence applied to invertebrates to investigate the role of essential trace elements in a biological process. Physica Scripta, 85, 1–8.

  46. Reinecke, K. J., & Owen, R. B., Jr. (1980). Food use and nutrition of black ducks nesting in Maine. Journal of Wildlife Management, 44, 549–558.

  47. Rubio-Franchini, I., Lopez-Hernandez, M., Ramos-Espinosa, M. G., & Rico-Martinez, R. (2016). Bioaccumulation of metals arsenic, cadmium, and lead in zooplankton and fishes from the Tula River Watershed, Mexico. Water, Air, & Soil Pollution, 227, 5.

  48. Scheuhammer, A. M., & Norris, S. L. (1996). The ecotoxicology of lead shot and lead fishing weights. Ecotoxicology, 5, 279–295.

  49. Scheuhammer, A. M., McNicol, D. K., Mallory, M. L., & Kerekes, J. J. (1997). Relationships between lake chemistries and calcium and trace metal concentrations of aquatic invertebrates eaten by breeding insectivorous waterfowl. Environmental Pollution, 96, 235–247.

  50. Schuhaimi-Othman, M., Nur-Amalina, R., & Nadzifah, Y. (2012). Toxicity of metals to a freshwater snail, Melanoides tuberculata. Scientific World Journal, 2012, 1–10.

  51. Scott, D. B., Frail-Gauthier, J., & Mudie, P. J. (2014). Coastal wetlands of the world: geology, ecology, distribution and applications (pp. 106–110). New York: Cambridge University Press.

  52. Sharitz, R. R., & Batzer, D. P. (1999). An introduction to freshwater wetlands in North America and their invertebrates. In D. P. Batzer, R. B. Rader, & S. A. Wissinger (Eds.), Invertebrates in freshwater wetlands of North America: ecology and management (pp. 1–22). New York: Wiley.

  53. Shaw, J., Amos, C. L., Greenberg, D. A., O’Reilly, C. T., Parrott, D. R., & Patton, E. (2010). Catastrophic tidal expansion in the Bay of Fundy, Canada. Canadian Journal of Earth Sciences, 47, 1079–1091.

  54. Simkiss, K., & Mason, A. Z. (1983). Metal ions: metabolic and toxic effects. In P. W. Hochachka (Ed.), The mollusca, volume 2, environmental biochemistry and physiology (pp. 102–156). New York: Academic Press Incorporated.

  55. Simonyi-Poirier, M., Goulet, R., & Pick, F. R. (2003). The use of periphyton and the freshwater gastropod Helisoma trivolvis to assess dissolved metal retention by a constructed wetland. Revue des Sciences de l’Eau, 16, 237–254.

  56. Speelmans, M., Vanthuyne, D. R. J., Lock, K., Hendrickx, F., Laing, G. D., Tack, F. M. G., & Janssen, C. R. (2007). Influence of flooding, salinity and inundation time on the bioavailability of metals in wetlands. Science of the Total Environment, 380, 144–153.

  57. Stanley, T. R., Jr., Spann, J. W., Smith, G. J., & Rosscoe, R. (1994). Main and interactive effects of arsenic and selenium on mallard reproduction and duckling growth and survival. Archives of Environmental Contamination and Toxicology, 26, 444–451.

  58. Walker, S. R., Parsons, M. B., Jamieson, H. E., & Lanzirotti, A. (2009). Arsenic mineralogy of near-surface tailings and soils: influences on arsenic mobility and bioaccessibility in the Nova Scotia gold mining districts. The Canadian Mineralogist, 47, 533–556.

  59. Weis, J. S., & Weis, P. (2004). Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environment International, 30, 685–700.

  60. White, H. (2012). Paleolimnological records of post-glacial lake and wetland evolution from the Isthmus of Chignecto region, Eastern Canada. M.Sc. thesis, Acadia University, Wolfville.

  61. Zhou, Q., Zhang, J., Fu, J., Shi, J., & Jiang, G. (2007). Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem. Analytica Chimica Acta, 606, 135–150.

Download references


Financial support for this project was provided by the Natural Sciences and Engineering Research Council of Canada, the Canada Research Chairs program, Ducks Unlimited Canada, and Acadia University.

Author information

Correspondence to Amanda L. Loder.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Loder, A.L., Mallory, M.L., Spooner, I. et al. Bioaccumulation of Lead and Arsenic in Gastropods Inhabiting Salt Marsh Ponds in Coastal Bay of Fundy, Canada. Water Air Soil Pollut 227, 75 (2016).

Download citation


  • Bioaccumulation
  • Lead
  • Arsenic
  • Wetlands
  • Gastropods