Water, Air, & Soil Pollution

, 227:67 | Cite as

Recirculation and Aeration Effects on Deammonification Activity

  • Angélica Chini
  • Airton Kunz
  • Aline Viancelli
  • Lucas Antunes Scussiato
  • Jéssica Rosa Dias
  • Ismael Chimanko Jacinto


Deammonification process has been studied as an alternative technology for nitrogen removal. This process consists of the association between nitrifying and anammox bacteria, in which the process success is related to aeration, recirculation, and reactor configuration. Considering this, the present study aimed to evaluate the performance of an expanded granular sludge bed (EGSB) reactor on nitrogen removal by deammonification process. Established in a single reactor, it considered the effects of recirculation rate and variation of dissolved oxygen (DO) concentration in microbial community and nitrogen removal efficiency. Thus, two independent tests were conducted: (T1) high recirculation flow rate, performed at 43 L d−1 (Qr/Qin = 16), aeration of 30 mLair min−1 L−1 reactor, and conducted during 16 days; (T2) low recirculation flow rate performed at 6.7 L d−1 (Qr/Qin = 2.5), operated for 55 days, divided into three aeration phases: (T2a) 30 mLair min−1 L−1 reactor, (T2b) 20 mLair min−1 L−1 reactor, and (T2c) 30 mLair min−1 L−1 reactor. Results showed that in T1 the high recirculation rate favored nitrifying bacteria prevalence, intensified by reactor turbulence and anammox granules disintegration, changing activity from deammonification to a nitrification process. In addition, T1 reached up to 350 ± 100 mgN L−1 d−1 nitrogen removal rate (NRR). For T2, at low recirculation rate, deammonification process was successfully established with a NRR of 490 mgN L−1 d−1 at Qr/Qin = 2.5 and air flow rate of 20 mLair min−1 L−1 reactor.


Anammox Deammonification EGSB reactor Nitrification Nitrogen removal 



This study had financial support from CAPES, CNPq, and Eletrosul.


  1. Akpor, O. B., & Muchie, M. (2011). Environmental and public health implications of wastewater quality. African Journal of Biotechnology, 10(13), 2379–2387.Google Scholar
  2. APHA, AWWA & WEF. (2012). Standard methods for the examination of water and wastewater (22nd ed.). Washington, DC: American Public Health Association.Google Scholar
  3. Arrojo, B., Figueroa, M., Mosquera-Corral, A., Campos, J. L., & Méndez, R. (2008). Influence of gas flow-induced shear stress on the operation of the anammox process in a SBR. Chemosphere, 72, 1687–1693.CrossRefGoogle Scholar
  4. Bagchi, S., Biswas, R., & Nandy, T. (2012). Autotrophic ammonia removal processes: Ecology to technology. Critical Reviews in Environmental Science and Technology, 42, 1353–1418.CrossRefGoogle Scholar
  5. Braker, G., Fesefeldt, A., & Witzel, K. P. (1998). Development of PCR primer systems for amplification of nitrite reductase genes (nirk and nirs) to detect denitrifying bacteria in environmental samples. Applied and Environmental Microbiology, 64, 3769–3775.Google Scholar
  6. Buha, D. M., Atalia, K. R., Baagwala, W. Y., & Shah, N. K. (2015). Review on wastewater treatment technologies for nitrogen removal. Global journal of multidisciplinary studies., 4(6), 299–318.Google Scholar
  7. Casagrande, C. G., Kunz, A., de Prá, M. C., Bressan, C. R., & Soares, H. M. (2013). High nitrogen removal rate using ANAMMOX process at short hydraulic retention time. Water Science and Technology, 67, 968–975.CrossRefGoogle Scholar
  8. CUI, F. Cold CANON: anammox at low temperatures. Master of Science in Civil Engineering. Delft University of Technology. Delf. 2012.Google Scholar
  9. Dapena-Mora, A., Fernández, I., Campos, J. L., Mosquera-Corral, A., Méndez, R., & Jetten, M. S. M. (2007). Evaluation of activity and inhibition effects on ANAMMOX process by batch tests based on the nitrogen gas production. Enzyme and Microbial Technology, 40, 859–865.CrossRefGoogle Scholar
  10. Daverey, A., Su, S., Huang, Y., Chen, S., Sung, S., & Lin, J. (2013). Partial nitrification and anammox process: A method for high strength optoelectronic industrial wastewater treatment. Water Research, 47, 2929–2937.CrossRefGoogle Scholar
  11. Fux, C. (2003). Biological nitrogen elimination of ammonium-rich sludge digester liquids. Phd thesis, ETH-Zürich, Switzland.Google Scholar
  12. Gude, V. G. (2015). Energy and water autarky of wastewater treatment and power generation systems. Renewable and Sustainable Energy Reviews, 45, 52–68.CrossRefGoogle Scholar
  13. Jeison, D., & Chamy, R. (1999). Comparison of the behaviour of expandedgranular sludge bed (EGSB) and upflow anaerobic sludge blanket (UASB) reactors in dilute and concentrated wastewater treatment.Water. Science and Technology, 40(8), 91–97.Google Scholar
  14. Kato, M. T., Florencio, L., & Arantes, R. F. M. (2003). Post-treatment of UASB effluent in an EGSB reactor type using flocculent sludge. Water Science & Technology., 48(6), 279–284.Google Scholar
  15. Li, Z., Xu, X., Shao, B., Zhang, S., & Yang, F. (2014a). Anammox granules formation and performance in a submerged anaerobic membrane bioreactor. Chemical Engineering Journal.Google Scholar
  16. Li, Z., Zhang, Z., & Zhang, Z. (2014b). Effect of substrates and free ammonia on kinetic characteristics of nitritation and nitratation by entrapped nitrifiers. Journal of Environmental Biology, 35, 759–763.Google Scholar
  17. Li, K., Guo, J., Fang, F., Chen, Y., Yang, J., & Wei, H. (2015). Performance of one-stage autotrophic nitrogen removal in a biofilm reactor with low C/N ratio. Bioresource Technology, 175, 189–194.CrossRefGoogle Scholar
  18. Liang, Y., Li, D., Zhang, X., Zeng, H., Yang, Z., Cui, S., & Zhang, J. (2015). Stability and nitrite-oxidizing bacteria community structure in different high-rate CANON reactors. Bioresource Technology, 175, 189–194.CrossRefGoogle Scholar
  19. López-Palau, S., Dosta, J., Pericas, A., & Mata-Álvarez, J. (2011). Partial nitrification of sludge reject water using suspended and granular biomass. J Chemical Technology Biotechnology., 86, 1480–1487.CrossRefGoogle Scholar
  20. Magrí, A., Vanotti, M. B., Szögi, A. A., & Cantrell, K. B. (2012). Partial Nitritation of Swine Wastewater in View of its Coupling with the ANAMMOX Process. Journal of Environmental Quality, 41, 1989–2000.CrossRefGoogle Scholar
  21. Pereboom, J. H. F. (1997). Strength characterisation of microbial granules. Water Science and Technology, 36(6–7), 141–148.CrossRefGoogle Scholar
  22. De Prá, M. C., Kunz, A., Bortoli, M., Perondi, T., & Chini, A. (2012). Simultaneous removal of TOC and TSS in swine wastewater using the partial nitritation process. Journal of Chemical Technology and Biotechnology, 87, 1641–1647.CrossRefGoogle Scholar
  23. Puyol, D., Carvajal-Arroyo, J. M., Garcia, B., Sierra-Alvarez, R., & Field, J. A. (2013). Kinetic characterization of Brocadia spp.-dominated anammox cultures. Bioresource Technology, 139, 94–100.CrossRefGoogle Scholar
  24. Ren, Y., Li, D., Li, X., Yang, L., Ding, A., & Zhang, J. (2014). High-rate nitrogen removal and microbial community of an up-flow anammox reactor with ceramics as biomass carrier. Chemosphere, 113, 125–131.CrossRefGoogle Scholar
  25. Ruiz, G., Jeison, D., & Chamy, R. (2003). Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration. Water Research, 37, 1371–1377.CrossRefGoogle Scholar
  26. Schmid, M. C., Hooper, A. B., Klotz, M. G., Woebken, D., Lam, P., Kuypers, M. M. M., Pommerening-Roeser, A., Op Den Camp, H. J. M., & Jetten, M. S. M. (2008). Environmental detection of octahaem cytochrome c hydroxylamine/hydrazine oxidoreductase genes of aerobic and anaerobic ammonium-oxidizing bacteria. Environmental Microbiology, 11(10), 3140–3149.CrossRefGoogle Scholar
  27. Tang, C., Heb, R., Zhengb, P., Chai, L., & Min, X. (2013). Mathematical modeling of high-rate Anammox UASB reactor based on granular packing patterns. Journal of Hazardous Materials, 250, 1–8.CrossRefGoogle Scholar
  28. Tatari, K., Smets, B. F., & Albrechtsen, H.-J. (2013). A novel bench-scale column assay to investigate site-specific nitrification biokinetics in biological rapid sand filters. Water Research, 47, 6380–6387.CrossRefGoogle Scholar
  29. Van Der Star, W. R. L., Abma, W. R., Boran Kartal, A., & Van Loosdrecht, M. C. M. (2011). Application of the anammox process. In: Ward, B. B., ARP, D. J., KLOTZ, M. G. (Org.). Nitrification. Washington: Library of Congress Cataloging-in-Publication Data. Cap. 10. 237.Google Scholar
  30. Xiong, L., Wang, Y-Y., Tang, C-J., Chai, L-Y., Xu, K-Q., Song, Y-X., Ali, M., & Zheng, P. (2013). Start-Up Characteristics of a Granule-Based Anammox UASB Reactor Seeded with Anaerobic Granular Sludge. Biomed Research International, 2013, 1–9.Google Scholar
  31. Xu, G., Zhou, Y., Yang, Q., May-Ping Lee, Z., Gu, J., Lay, W., Cao, Y., & Liu, Y. (2015). The challenges of mainstream deammonification process for municipal used water treatment. Applied Microbiology and Biotechnology, 6, 2485–2490.CrossRefGoogle Scholar
  32. Wei, D., Du, B., Xue, X., Dai, P., & Zhang, J. (2014). Analysis of factors affecting the performance of partial nitrification in a sequencing batch reactor. Applied Microbiology and Biotechnology, 98, 1863–1870.CrossRefGoogle Scholar
  33. Yang, J., Trela, J., Zubrowska-Sudol, M., & Plaza, E. (2015). Intermittent aeration in one-stage partial nitritation/anammox process. Ecological Engineering, 75, 413–420.CrossRefGoogle Scholar
  34. Zheng, M., Yan, Z., Zuo, J., & Wang, K. (2013). Concept and application of anaerobic suspended granular sludge bed (SGSB) reactor for wastewater treatment. Frontiers of Environmental Science & Engineering., 8, 797–804.CrossRefGoogle Scholar
  35. Zhu, G., Peng, Y., Li, B., Guo, J., Yang, Q., & Wang, S. (2008). Biological removal of nitrogen from wastewater. Reviews of Environmental Contamination and Toxicology, 192, 159–195.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Western Paraná State UniversityCascavelBrazil
  2. 2.Embrapa Swine and PoultryConcórdiaBrazil
  3. 3.Contestado UniversityConcórdiaBrazil

Personalised recommendations