Assessing the Effects of Climate Change and Air Pollution on Soil Properties and Plant Diversity in Sugar Maple–Beech–Yellow Birch Hardwood Forests in the Northeastern United States: Model Simulations from 1900 to 2100

  • Jennifer PhelanEmail author
  • Salim Belyazid
  • Phillip Jones
  • Jamie Cajka
  • John Buckley
  • Christopher Clark


Historical deposition of nitrogen (N) and sulfur (S) over the Eastern United States has impacted ecosystem structure and function. The potential for recovery of ecosystems is relatively uncertain, with deposition paired with future climate change contributing to this uncertainty. The impacts of N and S deposition and climate change (from 1900 to 2100) on two sugar maple–beech–yellow birch sites in the Northeastern United States were evaluated using the paired biogeochemical–vegetation response model ForSAFE-Veg at two research sites, Hubbard Brook Experimental Forest and Bear Brook Watershed. Deposition was found to be the dominant stressor, causing changes in soil acid–base chemistry, N enrichment, and shifts in understory species composition. Responses of the two sites varied due primarily to differences in buffering capacity and levels of deposition. However, at both sites, recovery of soil and plant community properties to 1900 conditions was approached only when future deposition to 2100 was returned to pre-industrial levels. Policy-based reductions in deposition generally halted further damage to soils and plants and resulted in no or only partial recovery. Increased temperatures and precipitation according to Intergovernmental Panel on Climate Change (IPCC) climate futures stimulated soil and plant response, thereby accelerating changes in plant communities and N enrichment and counteracting the acidifying impacts of N and S deposition on soil acid–base chemistry.


Deposition Climate Soil Understory vegetation Model Hubbard Brook Bear Brook 



The data for Hubbard Brook Experimental Forest (HBEF) were largely derived from the datasets of the cooperative Hubbard Brook Ecosystem Study, which is operated and maintained by the U.S. Department of Agriculture (USDA) Forest Service (USFS). The data for Bear Brook Watershed in Maine (BBWM) were derived from datasets from the BBWM research program and publications. The BBWM data have been collected since 1986 with support from the U.S. EPA, U.S. National Science Foundation, U.S. Geological Survey, USFS, the Maine Agricultural and Forest Experiment Station, the Senator George Mitchell Center for Environmental and Watershed Research, and the University of Maine. The project principal investigators are I.J. Fernandez, J.S. Kahl, S.A. Norton, L.E. Rustad, and G.B. Wiersma. The University of Maine has a long-term lease with the International Paper Corporation, the landowner. The authors appreciate the access to these data and would like to specifically acknowledge the extra efforts of Cheryl Spencer in providing the East Bear soil samples, Farrah Fatemi for providing the BBWM soil solution data, Scott Bailey for providing the HBEF soil chemistry data, and Natalie Cleavitt for measuring the understory vegetation in HBEF.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.


This study was funded by the U.S. EPA (contract EP-C-11-036).


The views presented here are those of the authors and do not represent official views or policy of the U.S. Environmental Protection Agency (EPA) or any other U.S. federal agency.

Supplementary material

11270_2016_2762_MOESM1_ESM.docx (365 kb)
Appendix (DOCX 365 kb)


  1. Aber, J. D., & Driscoll, C. T. (1997). Effects of land use, climate variation, and N deposition on N cycling and C storage in northern hardwood forests. Global Biogeochemical Cycles, 11, 639–48.CrossRefGoogle Scholar
  2. Aber, J. D., Nadelhoffer, K. J., Steudler, P., & Melillo, J. M. (1989). Nitrogen saturation in Northern Forest ecosystems. BioScience, 39, 378–386.CrossRefGoogle Scholar
  3. Aber, J., McDowell, W., Nadelhoffer, K., Magill, A., Berntson, G., Kamakea, M., McNulty, S., Currie, W., Rustad, L., & Fernandez, I. (1998). Nitrogen saturation in temperate forest ecosystems. BioScience, 48, 921–934.CrossRefGoogle Scholar
  4. Aber, J. D., Goodale, C. L., Ollinger, S. V., Smith, M.-L., Magill, A. H., Martin, M. E., Hallett, R. A., & Stoddard, J. L. (2003). Is nitrogen deposition altering the nitrogen status of northern forests? BioScience, 53, 375–389.CrossRefGoogle Scholar
  5. Aerts, R., & Chapin, F. S. (2000). The mineral nutrition of wild plants revisited: a re-evaluation of processes and patterns. Advances in Ecological Research, 30, 1–67.CrossRefGoogle Scholar
  6. Akselsson, C., Hultberg, H., Karlsson, P. E., Karlsson, G., & Hellsten, S. (2013). Acidification trends in south Swedish forest soils 1986–2008—slow recovery and high sensitivity to sea-salt episodes. Science of the Total Environment, 444, 271–287.CrossRefGoogle Scholar
  7. Avila, A., Neal, C., & Terradas, J. (1996). Climate change implications for streamflow and streamwater chemistry in a Mediterranean catchment. Journal of Hydrology, 177, 99–116.CrossRefGoogle Scholar
  8. Balland, V., Pollacco, A. P., & Arp, P. A. (2008). Modeling soil hydraulic properties for a wide range of soil conditions. Ecological Modelling, 219, 300–316.CrossRefGoogle Scholar
  9. Belyazid, S. (2006). Dynamic modelling of biogeochemical processes in forest ecosystems. Lund, Sweden: Chemical Engineering, Lund University.Google Scholar
  10. Belyazid, S., Phelan, J. Nihlgård, B., Sverdrup, H., Driscoll, C., Fernandez, I., Aherne, J., Adams, L., Bailey, S., Arsenault, M., Cleavitt, N., Engstrom, B., Dennis, R., Sperduto, D., Werier, D., & Clark, C. (submitted). Assessing the effect of climate change and air pollution on soil properties and plant diversity in Northeastern U.S. hardwood forests: model setup & evaluation. Water, Air, & Soil Pollution.Google Scholar
  11. Belyazid, S., Kurz, D., Braun, S., Sverdrup, H., Rihn, B., & Hettelingh, J. P. (2011a). A dynamic modelling approach for estimating critical loads of nitrogen based on plant community changes under a changing climate. Environmental Pollution, 159, 789–801.CrossRefGoogle Scholar
  12. Belyazid, S., Sverdrup, H., Kurz, D., & Braun, S. (2011b). Exploring ground vegetation change for different deposition scenarios and methods for estimating critical loads for biodiversity using the ForSAFE-VEG model in Switzerland and Sweden. Water, Air, and Soil Pollution, 216, 289–317.CrossRefGoogle Scholar
  13. Bilodeau-Gauthier, S., Houle, D., Gagnon, C., Côté, B., & Messier, C. (2011). Assessment of sugar maple tree growth in relation to the partitioning of elements in xylem along a soil acidity gradient. Forest Ecology and Management, 261, 95–104.CrossRefGoogle Scholar
  14. Bobbink, R., & Hettelingh, J.-P. (Eds.). (2011). Review and revision of empirical critical loads and dose-response relationships. Proceedings of an expert workshop, Noordwijkerhout, 23–25 June 2010, Coordination Centre of Effects (CCE), National Institute for Public Health and the Environment (RIVM), The Netherlands.Google Scholar
  15. Bobbink, R., Hicks, K., Galloway, J., Spranger, T., Alkemade, R., Ashmore, M., Bustamante, M., Cinderby, S., Davidson, E., Dentener, F., Emmett, B., Erisman, J.-W., Fenn, M., Gilliam, F., Nordin, A., Pardo, L., & De Vries, W. (2010). Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecological Applications, 20, 30–59.CrossRefGoogle Scholar
  16. Boesch, D. F. (1977). Application of numerical classification in ecological investigations of water pollution. Special Scientific Report 77. VIMS (EPA-600/3-770).Google Scholar
  17. Bowman, W. D., Murgel, J., Blett, T., & Porter, E. (2010). Nitrogen critical loads for alpine vegetation and soils in Rocky Mountain National Park. Journal of Environmental Management, 103, 165–171.CrossRefGoogle Scholar
  18. Cosby, B. J., Norton, S. A., & Kahl, J. S. (1996). Using a paired-catchment manipulation experiment to evaluate a catchment-scale biogeochemical model. The Science of the Total Environment, 183, 49–66.CrossRefGoogle Scholar
  19. Cronan, C. S., & Grigal, D. F. (1995). Use of calcium/aluminum ratios as indicators of stress in forest ecosystems. Journal of Environmental Quality, 24, 209–226.CrossRefGoogle Scholar
  20. DeHayes, D. H., Schaberg, P. G., Hawley, G. J., & Strimbeck, G. R. (1999). Acid rain impacts on calcium nutrition and forest health. Bioscience, 49, 789–800.CrossRefGoogle Scholar
  21. Dietze, M. C., & Moorcroft, P. R. (2011). Tree mortality in the eastern and central United States: patterns and drivers. Global Change Biology, 17, 3312–3326.CrossRefGoogle Scholar
  22. Driscoll, C.T. (2011). Chemistry of freely-draining soil solutions at the Hubbard Brook Experimental Forest. Watershed 6, 1982 – present. Available online at: Accessed on 07/02/15.
  23. Driscoll, C. T., Lawrence, G. B., Bulger, A. J., Butler, T. J., Cronan, C. S., Eager, C., Lambert, K. F., Likens, G. E., Stoddard, J. L., & Weathers, K. C. (2001). Acidic deposition in the Northeastern United States: sources and inputs, ecosystem effects, and management strategies. Bioscience, 51, 180–198.CrossRefGoogle Scholar
  24. Duarte, N., Pardo, L. H., & Robin-Abbott, M. J. (2013). Susceptibility of forests in the Northeastern USA to nitrogen and sulfur deposition: critical load exceedance and forest health. Water, Air and Soil Pollution, 224, 1355.CrossRefGoogle Scholar
  25. Dukes, J. S., Chiariello, N. R., Cleland, E. E., Moore, L. A., Shaw, M. R., Thayer, S., Tobeck, T., Mooney, H. A., & Field, C. B. (2005). Responses of grassland production to single and multiple global environmental changes. PLoS Biology, 3, 1829–1837.CrossRefGoogle Scholar
  26. Eckhoff, J.D., & Wiersma, G.B. (2002). Baseline data for long-term forest vegetation monitoring at Bear Brook Watershed in Maine. Maine Agricultural and Forest Experiment Station. Technical bulletin 180. ISSN 1070-1524.Google Scholar
  27. Elias, P. E., Burger, J. A., & Adams, M. B. (2009). Acid deposition effects on forest composition and growth on the Monongahela National Forest, West Virginia. Forest Ecology and Management, 258, 2175–2182.CrossRefGoogle Scholar
  28. Emmett, B. A. (2007). Nitrogen saturation of terrestrial ecosystems: some recent findings and their implications for our conceptual framework. Water, Air and Soil Pollution: Focus, 7, 99–109.CrossRefGoogle Scholar
  29. Fatemi, F. R., Fernandez, I. J., Szillery, J., Norton, S. A., & Rustad, L. E. (2012). Soil solution chemical response to two decades of experimental acidification at the Bear Brook Watershed in Maine. Water Air and Soil Pollution. doi: 10.1007/s11270-012-1348-5.Google Scholar
  30. Fenn, M. E., Huntington, T. G., McLaughlin, S. B., Eagar, C., Gomez, A., & Cook, R. B. (2006). Status of soil acidification in North America. Journal of Forest Science, 52(Special Issue), 3–13.Google Scholar
  31. Fernandez, I. J., Rust, L. E., Norton, S. A., Kahl, J. S., & Cosby, B. J. (2003). Experimental acidification causes soil base cation depletion at the Bear Brook Watershed in Maine. Soil Science Society of America Journal, 67, 1909–1919.CrossRefGoogle Scholar
  32. Fernandez, I. J., Adams, M. B., SanClements, M. D., & Norton, S. A. (2010). Comparing decadal responses of whole-watershed manipulations at the Bear Brook and Fernow experiments. Environmental Monitoring and Assessment, 171, 149–161.CrossRefGoogle Scholar
  33. Fernandez, I.J., Nelson, S., Norton, S.A., Spencer, C., Rustad, L.E., Simon, K., Kahl, J.S., & Wiersma, G.B. (2013). Bear Brook Watershed in Maine (BBWM): stream and precipitation chemistry. University of Maine, Orono, Maine. Available online at: Accessed on 07/02/15.
  34. Galloway, J. N., Dentener, F. J., Capone, D. G., Boyer, E. W., Howarth, R. W., Seitzinger, S. P., Asner, G. P., Cleveland, P. A., Green, P. A., Holland, E. A., Karl, D. M., Michaels, A. G., Porter, J. H., Townsend, R., & Vorosmarty, C. J. (2004). Nitrogen cycles: past, present, and future. Biogeochemistry, 70, 153–226.CrossRefGoogle Scholar
  35. Gbondo-Tugbawa, S. S., & Driscoll, C. T. (2003). Factors controlling long-term changes in soil pools of exchangeable basic cations and stream acid neutralizing capacity in a northern hardwood forest ecosystem. Biogeochemistry, 63, 161–185.CrossRefGoogle Scholar
  36. Gilliam, F. S., Hockenberry, A. W., & Adams, M. B. (2006). Effects of atmospheric nitrogen deposition on the herbaceous layer of a central Appalachian hardwood forest. Journal of the Torrey Botanical Society, 133, 240–254.CrossRefGoogle Scholar
  37. Grennfelt, P., & Hultberg, H. (1986). Effects of nitrogen deposition on the acidification of terrestrial and aquatic ecosystems. Water, Air and Soil Pollution, 30, 945–963.CrossRefGoogle Scholar
  38. Hansen, K., Rosenqvist, L., Vesterdal, L., & Gundersen, P. (2007). Nitrate leaching from three afforestation chronosequences on former arable land in Denmark. Global Change Biology, 13, 1250–1264. doi: 10.1111/j.1365-2486.2007.01355.x.CrossRefGoogle Scholar
  39. IPCC. (2013). Climate Change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex & P.M. Midgley (eds.). Cambridge University Press, Cambridge, United Kingdom & New York, NY, USA, 1535 pp.Google Scholar
  40. Johnson, C. E., Johnson, A. H., Huntington, T. G., & Siccama, T. G. (1991a). Whole-tree clear-cutting effects on soil horizons and organic-matter pools. Soil Science Society of America Journal, 55, 497–502.CrossRefGoogle Scholar
  41. Johnson, C. E., Johnson, A. H., & Siccama, T. G. (1991b). Whole-tree clear-cutting effects on exchangeable cations and soil acidity. Soil Science Society of America Journal, 55, 502–508.CrossRefGoogle Scholar
  42. Johnson, C. E., Driscoll, C. T., Siccama, T. G., & Likens, G. E. (2000). Element fluxes and landscape position in a northern hardwood forest watershed ecosystem. Ecosystems, 3, 159–184.CrossRefGoogle Scholar
  43. Joslin, J. D., & Wolfe, M. H. (1993). Temperature increase accelerates nitrate release from high-elevation red spruce soils. Canadian Journal of Forest Research, 23, 756–759.CrossRefGoogle Scholar
  44. Kenlan, P., Wiersma, G.B., White, A.S., & Fernandez, I.J. (2009). Composition and biomass of forest floor vegetation in experimentally acidified paired watersheds at the Bear Brook Watershed in Maine. Technical Bulletin 202. Maine Agricultural & Forest Experiment Station. The University of Maine. ISSN 1070-1524.Google Scholar
  45. Lawrence, G.B., Sullivan, T.J., Burns, D.A., Bailey, S.A., Cosby, B.J., Dovciak, M., Ewing, H.A., McDonnel, T.C., Minocha, R., Quant, J., Rice, K.C., Siemion, J., & Weathers, K. (2015). Acidic deposition along the Appalachian Trail corridor and its effects on acid-sensitive terrestrial and aquatic resources: results of the Appalachian Trail MEGA-transect atmospheric deposition effects study. Natural Resource Report. NPS/NRSS/ARD/NRR—2015/996. Fort Collins, Colorado. Published Report-2223220.Google Scholar
  46. Likens, G. E., Driscoll, C. T., Buso, D. C., Siccama, T. G., Johnson, C. E., Lovett, G. M., Ryan, D. G., Fahey, T., & Reiners, W. A. (1994). The biogeochemistry of potassium at Hubbard Brook. Biogeochemistry, 25, 61–125.CrossRefGoogle Scholar
  47. Long, R. P., Horsley, S. B., Hallett, R. A., & Bailey, S. W. (2009). Sugar maple growth in relation to nutrition and stress in the Northeastern United States. Ecological Applications, 19, 1454–1466.CrossRefGoogle Scholar
  48. Lynch, J., Pardo, L., & Huber, C. (2013). Detailed documentation of the CLAD U.S. Critical Loads of Sulfur & Nitrogen Access Database, version 2.0. Available online at: Accessed on 03/13/15.
  49. Ma, L.-N., Lü, X.-T., Guo, J.-X., Zhang, N.-Y., Yang, J.-Q., & Wang, R.-Z. (2011). The effects of warming and nitrogen addition on soil nitrogen cycling in a temperate grassland, Northeastern China. PLoS ONE, 6, 1–8.Google Scholar
  50. Mason, R., Zubrow, A., & Eyth, A. (2013). Emissions inventory for air quality modeling technical support document: proposed Tier 3 emissions standards. Air Quality Assessment Division Office of Planning & Standards U.S. Environmental Protection Agency Research Triangle Park, NC 27711. EPA-454/R-13-002. Available online at:
  51. McDonnell, T. C., Sullivan, T. J., Cosby, B. J., Jackson, W. A., & Elliot, K. J. (2013). Effects of climate, land management, and sulfur deposition on soil base cation supply in national forests of the southern Appalachian Mountains. Water, Air and Soil Pollution, 224, 1733.CrossRefGoogle Scholar
  52. McDonnell, T. C., Belyazid, S., Sullivan, T. J., Sverdrup, H., Bowman, W. D., & Porter, E. M. (2014). Modeled subalpine plant community response to climate change and atmospheric nitrogen deposition in Rocky Mountain National Park, USA. Environmental Pollution, 187, 55–64.CrossRefGoogle Scholar
  53. McNulty, S. G., & Boggs, J. L. (2010). A conceptual framework: redefining forest soil’s critical acid loads under a changing climate. Environmental Pollution, 158, 2053–2058.CrossRefGoogle Scholar
  54. McNulty, S. G., Boggs, J., Aber, J. D., Rustad, L., & Magill, A. (2005). Red spruce ecosystem level changes following 14 years of chronic nitrogen fertilization. Forest Ecology and Management, 219, 279–291.CrossRefGoogle Scholar
  55. Melillo, J.M., Richmond, T.C., & Yohe, G.W. (Eds.). (2014). Climate change impacts in the United States: the Third National Climate Assessment. U.S. Global Change Research Program, 841 pp. doi:  10.7930/J0Z31WJ2. Available online at: Accessed on 08/20/15.
  56. NADP (National Atmospheric Deposition Program). (2015). Annual NTN maps by year. Available online at: Accessed on 03/09/15.
  57. Navrátil, T., Norton, S. A., Fernandez, I. J., & Nelson, S. J. (2010). Twenty-year inter-annual trends and seasonal variations in precipitation and stream water chemistry at the Bear Brook Watershed in Maine, USA. Environmental Monitoring and Assessment, 171, 23–45.CrossRefGoogle Scholar
  58. NEG/ECP (New England Governors-Eastern Canadian Premiers). (2001). Protocol for assessing forest sensitivity to N & S deposition. Acid Rain Action Plan. Action Item 4: Forest Mapping Research Project. Available online at:
  59. Niboyet, A., Le Roux, X., Dijkstra, P., Hungate, B. A., Barthes, L., Blankinship, J. C., Brown, J. R., Field, C. B., & Leadley, P. W. (2011). Testing interactive effects of global environmental changes on soil nitrogen cycling. Ecosphere, 2, 1–24.CrossRefGoogle Scholar
  60. Nilsson, J., & Grennfelt, P. (1988). Critical loads for sulphur and nitrogen. Copenhagen: Nordic Council of Ministers.CrossRefGoogle Scholar
  61. Norton, S., Kahl, J., Fernandez, I., Haines, T., Rustad, L., & Nodvin, S. (1999). The Bear Brook Watershed, Maine (BBWM), USA. Environmental Monitoring and Assessment, 55, 7–51.CrossRefGoogle Scholar
  62. Ouimet, R., Moore, J.-D., & Duchesne, L. (2008). Effects of experimental acidification and alkalinization on soil and growth and health of Acer saccharum Marsh. Journal of Plant Nutrition and Soil Science, 171, 858–871.CrossRefGoogle Scholar
  63. Pardo, L. H., Fenn, M., Goodale, C. L., Geiser, L. H., Driscoll, C. T., Allen, E., Baron, J., Bobbink, R., Bowman, W. D., Clark, C., Emmett, B., Gilliam, F. S., Greaver, T., Hall, S. J., Lilleskov, E. A., Liu, L., Lynch, J., Nadelhoffer, K., Perakis, S., Robin-Abbott, M. J., Stoddard, J., Weathers, K., & Dennis, R. L. (2011). Effects of nitrogen deposition and empirical critical loads for nitrogen for ecoregions of the United States. Ecological Applications, 21, 3049–3082.CrossRefGoogle Scholar
  64. Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution and Systematics, 37, 637–669.CrossRefGoogle Scholar
  65. Peterjohn, W. T., Melillo, J. M., Streudler, P. M., Newkirk, K. M., Bowles, F. P., & Aber, J. D. (1994). Responses of trace gas fluxes and N availability to experimentally elevated soil temperatures. Ecological Applications, 4, 617–625.CrossRefGoogle Scholar
  66. Phelan, J., Belyazid, S., Kurz, D., Guthrie, S., Cajka, J., Sverdrup, H., & Waite, R. (2014). Estimation of soil base cation weathering rates with the PROFILE model to determine critical loads of acidity for forested ecosystems in Pennsylvania, USA: pilot application of a potential national methodology. Water, Air, and Soil Pollution, 225, 2109. doi:  10.1007/s11270-014-2109-4.
  67. Porter, E., Blett, T., Potter, D. U., & Huber, C. (2005). Protecting resources on federal lands: implications of critical loads for atmospheric deposition of nitrogen and sulfur. BioScience, 55, 603–612.CrossRefGoogle Scholar
  68. Porter, E. M., Bowman, W. D., Clark, C. M., Compton, J. E., Pardo, L. H., & Soong, J. L. (2013). Interactive effects of anthropogenic nitrogen enrichment and climatic change on terrestrial and aquatic biodiversity. Biogeochemistry, 114, 93–120.CrossRefGoogle Scholar
  69. PRISM (PRISM Climate Group, Oregon State University). (2013a). Historical past (1895-1980) climate data. Available at: Accessed on 05/01/13.
  70. PRISM (PRISM Climate Group, Oregon State University). (2013b). Recent years (Jan 1981 - Aug 2014) AN81m climate data. Available at: Accessed on 05/01/13.
  71. RCP Database. (2013). RCP (Representative Concentration Pathway) Database version. 2.0.5. Available at: Accessed on 05/01/13.
  72. Reich, P. B. (2009). Elevated CO2 reduces losses of plant diversity by nitrogen deposition. Science, 326, 1399–1402.CrossRefGoogle Scholar
  73. Rockstrom, J., Steffen, W., Noone, K., Persson, A., Chapin, F. S., III, Lambin, E. F., Lenton, T. M., Scheffer, M., Folke, C., Schellnhuber, H. J., Nykvist, B., de Wit, C. A., Hughes, T., van der Leeuw, S., Rodhe, H., Sörlin, S., Snyder, P. K., Costanza, R. K., Svedin, U., Falkenmark, M., Karlberg, L., Corell, R. W., Fabry, V. J., Hansen, J., Walker, B., Liverman, D., Richardson, K., Crutzen, P., & Foley, J. A. (2009). A safe operating space for humanity. Nature, 461, 472–475.CrossRefGoogle Scholar
  74. Rustad, L. E., Kahl, J. S., Norton, S. A., & Fernandez, I. J. (1994). Underestimation of dry deposition by throughfall in mixed northern hardwood forests. Journal of hydrology, 164, 319–336.CrossRefGoogle Scholar
  75. SanClements, M. D., Fernandez, I. J., & Norton, S. A. (2010). Soil chemical and physical properties at the Bear Brook Watershed in Maine, USA. Environmental Monitoring and Assessment, 171, 111–128.CrossRefGoogle Scholar
  76. Shaw, M. R., Zavaleta, E. S., Chiariello, N. R., Cleland, E. E., Mooney, H. A., & Field, C. B. (2002). Grassland responses to global environmental changes suppressed by elevated CO2. Science, 298, 1987–1990.CrossRefGoogle Scholar
  77. Simkin, S.M., Allen, E.B., Bowman, W.D., Clark, C.M., Belnap, J., Brooks, M.L., Cade, B.S., Collins, S.L., Geiser, L.H., Gilliam, F.S., Jovan, S.E., Pardo, L.H., Schulz, B.K., Stevens, C.L., Suding, K.N., Throop, H.L., & Waller, D.M. (submitted). A continental analysis of ecosystem vulnerability to atmospheric nitrogen deposition. Proceedings of the National Academy of Sciences.Google Scholar
  78. Strang, D., & Aherne, J. (2015). Potential influence of climate change on the acid-sensitivity of high-elevation lakes in the Georgia Basin, British Columbia. Advances in Meteorology, 2015, doi:  10.1155/2015/536892
  79. Sullivan, T. J., Lawrence, G. B., Bailey, S. W., McDonnell, T. C., Beier, C. M., Weathers, K. C., McPherson, G. T., & Bishop, D. A. (2013). Effects of acidic deposition and soil acidification on sugar maple trees on Adirondack Mountains, New York. Environmental Science and Technology, 47, 12687–12694.CrossRefGoogle Scholar
  80. Sverdrup, H., & Warfvinge, P. (1993). The effect of soil acidification on the growth of trees, grass and herbs as expressed by the (Ca + Mg + K)/Al ratio. Reports in Ecology and Environmental Engineering, Report 2:1993. Lund University, Department of Chemical Engineering II, Lund, Sweden. 177 pp.Google Scholar
  81. Sverdrup, H., Belyazid, S., Nihlgard, B., & Ericson, L. (2007). Modelling change in ground vegetation response to acid and nitrogen pollution, climate change and forest management in Sweden 1500-2100 A.D. Water, Air and Soil Pollution, 7, 163–179.CrossRefGoogle Scholar
  82. Sverdrup, H., Belyazid, S., Kurz, D., & Braun, S. (2008). Proposed method for estimating critical loads for nitrogen based on biodiversity using a fully integrated dynamic model, with testing in Switzerland and Sweden. In: Sverdrup, H. (Ed.), Towards critical loads for nitrogen based on biodiversity: exploring a fully integrated dynamic model at test sites in Switzerland and Sweden. Background Document for the 18th CCE Workshop on the Assessment of Nitrogen Effects under the ICP for Modelling and Mapping, LRTAP Convention (UNECE), 21e25 April 2008, Berne, Switzerland.Google Scholar
  83. Sverdrup, H., McDonnell, T. C., Sullivan, T. J., Nihlgård, B., Belyazid, S., Rihm, B., Porter, E., Bowman, W. D., & Geiser, L. (2012). Testing the feasibility of using the ForSAFE-VEG model to map the critical load of nitrogen to protect plant biodiversity in the Rocky Mountains region, USA. Water, Air and Soil Pollution, 223, 371–387.CrossRefGoogle Scholar
  84. Thomas, R. Q., Canham, C. D., Weathers, K. C., & Goodale, C. L. (2010). Increased tree carbon storage in response to nitrogen deposition in the US. Nature Geoscience, 3, 13–17.CrossRefGoogle Scholar
  85. Thrasher, B., Xiong, J., Wang, W., Melton, F., Michaelis, A., & Nemani, R. (2013). Downscaled climate projections suitable for resource management. Eos, Transactions American Geophysical Union, 94, 321–323.CrossRefGoogle Scholar
  86. Thuiller, W., Albert, C., Araújo, M. B., Berry, P. M., Cabeza, M., Guisan, A., Hickler, T., Midgley, G. F., Paterson, J., Schurr, F. M., Sykes, M. T., & Zimmermann, N. E. (2008). Predicting global change impacts on plant species’ distributions: future challenges. Perspectives in Plant Ecology, Evolution and Systematics, 9, 137–152.CrossRefGoogle Scholar
  87. U.S. EPA (U.S. Environmental Protection Agency). (2009). Risk and exposure assessment for review of the secondary national ambient air quality standards for oxides of nitrogen and oxides of sulfur: final. Research, Triangle Park, NC: Office of Air Quality Planning and Standards, Health and Environmental Impacts Division.Google Scholar
  88. U.S. EPA (U.S. Environmental Protection Agency). (2013a). Draft regulatory impact analysis: Tier 3 motor vehicle emission & fuel standards. Air Quality Assessment Division Office of Air Quality Planning & Standards U.S. Environmental Protection Agency. EPA-420-D-13-002. Available at: Accessed on 08/12/2015.
  89. U.S. EPA (U.S. Environmental Protection Agency). (2013b). Air quality modeling technical support document: proposed Tier 3 emission standards. Air Quality Assessment Division Office of Air Quality Planning & Standards U.S. Environmental Protection Agency. EPA-454/R-13-006. Available at: Accessed on 08/12/2015.
  90. UNECE (United Nations Economic Commission for Europe). (2004). Manual on methodologies and criteria for modeling and mapping critical loads and levels and air pollution effects, risks, and trends. Convention on Long-Range Transboundary Air Pollution, Geneva Switzerland. Available at: Accessed on 08/12/2015.
  91. USFS (U.S. Forest Service). (2013). National forest type dataset. Available at: Accessed on 01/01/2013.
  92. USFS (U.S. Forest Service). (2014). Yellow birch and acid deposition in the Southern Appalachians. Available at: Accessed on 08/12/2015.
  93. Verburg, P. S. J., Van Loon, W. K. P., & Lükewille, A. (1999). The CLIMEX experiment: soil response after 2 years of treatment. Biology and Fertility of Soils, 28, 271–276.CrossRefGoogle Scholar
  94. Vitousek, P. M., & Howarth, R. W. (1991). Nitrogen limitation on land and sea—how can it occur? Biogeochemistry, 13, 87–115.CrossRefGoogle Scholar
  95. Vitousek, P. M., Aber, J. D., Howarth, R. W., Likens, G. E., Matson, P. A., Schindler, D. W., Schlesinger, W. H., & Tilman, D. G. (1997). Human alterations of the global nitrogen cycle: sources and consequences. Ecological Applications, 7, 737–750.Google Scholar
  96. Wallace, Z. P., Lovett, G. M., Hart, J. E., & Machona, B. (2007). Effects of nitrogen saturation on tree growth and death in a mixed-oak forest. Forest Ecology and Management, 243, 210–218.CrossRefGoogle Scholar
  97. Wallman, P., Svensson, M. G. E., Sverdrup, H., & Belyazid, S. (2005). ForSAFE—integrated process-oriented forest model for long-term sustainability assessments. Forest Ecology and Management, 207, 19–36.CrossRefGoogle Scholar
  98. Warfvinge, P., & Sverdrup, H. (1992). Calculating critical loads of acid deposition with PROFILE—a steady-state soil chemistry model. Water Air and Soil Pollution, 63, 119–143.CrossRefGoogle Scholar
  99. Whittacker, R. H., Bormann, F. H., Likens, G. E., & Siccama, T. G. (1974). The Hubbard Brook Ecosystem Study: forest biomass and production. Ecological Monographs, 44, 233–254.CrossRefGoogle Scholar
  100. Yanai, R. D., Park, B. B., & Hamburg, S. P. (2006). The vertical and horizontal distribution of roots in northern hardwood stands of varying age. Canadian Journal of Forest Research, 36, 450–459.CrossRefGoogle Scholar
  101. Zavaleta, E. S., Shaw, M. R., Chiariello, N. R., Mooney, H. A., & Field, C. B. (2003). Additive effects of simulated climate changes, elevated CO2, and nitrogen deposition on grassland diversity. PNAS, 100, 7650–7654.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Jennifer Phelan
    • 1
    Email author
  • Salim Belyazid
    • 2
  • Phillip Jones
    • 1
  • Jamie Cajka
    • 1
  • John Buckley
    • 1
  • Christopher Clark
    • 3
  1. 1.RTI InternationalRaleighUSA
  2. 2.Belyazid Consulting and Communication ABMalmöSweden
  3. 3.U.S. Environmental Protection AgencyWashingtonUSA

Personalised recommendations