Water, Air, & Soil Pollution

, 227:45 | Cite as

The Use of Sodium to Calibrate the Transport Modeling of Water Pollution in Sandy Formations Around an Uninsulated Sewage Disposal Site

  • György SzabóEmail author
  • Éva Bessenyei
  • Andor Hajnal
  • István Csige
  • Gergely Szabó
  • Csaba Tóth
  • József Posta
  • Tamás Mester


In the present paper we suggest a novel calibration method of the model for hydrodynamic and contaminant transport using the example of a sewage disposal site set up uninsulated in a sandy environment. With the hydrodynamic model we applied time-dependent model calculations in order to fit the individual hydrodynamic parameters. For the calibration of the transport model, sodium was chosen, which has a negligible retardation factor. We demonstrated that this approach is suitable for creating a model that provides calculated results comparable to the actually measured, experimental ones. The created model proved to be appropriate for use in the estimation of the maximal spatial extension of the contamination, which—in the case of the investigated sewage disposal site—was found to be 0.1 km2 in the near-surface (1–3 m deep) layers, whereas it was three times higher at a depth of 40–60 m.


Contamination transport Groundwater pollution Model calibration Sewage disposal site Sodium 



This research was realized in the framework of TÁMOP 4.2.4. A/2-11-1-2012-0001 “National Excellence Program—Designing and Operating a Personal Support System Convergence Program for Hungarian Students and Researchers,” and it was supported by TÁMOP-4.2.2/B-10/1-2010-0024 as well. The project was cofinanced by the European Union and European Social Fund.


  1. Al-Khashman, O. A. (2008). Assessment of the spring water quality in The Shoubak area, Jordan. Environmentalist, 28, 203–215.CrossRefGoogle Scholar
  2. Campbell, C. S. (1985). Soil Physics with Basic. New York: Elsevier.Google Scholar
  3. Chakraborty, R., & Ghosh, A. (2009). Finite difference method for computation of sodium and chloride migration in porous media, Proceedings of the Indian Geotechnical Conference, pp. 268–271.Google Scholar
  4. Chawla, A., & Singh, S. K. (2014). Modelling of contaminant transport from landfills. International Journal of Engineering Science and Innovative Technology, 3(5), 222–227.Google Scholar
  5. Cho, J.-C., Cho, H. B., & Kim, S.-J. (2000). Heavy contamination of a subsurface aquifer and a stream by livestock wastewater in a stock farming area, Wonju, Korea. Environmental Pollution, 109, 137–146.CrossRefGoogle Scholar
  6. Datta, B., Chakrabarty, D., & Dhar, A. (2011). Identification of unknown groundwater pollution sources using classical optimization with linked simulation. Journal of Hydro-Environment Research, 5, 25–36.CrossRefGoogle Scholar
  7. Delkash, M., Al-Faraj, F. A. M., & Scholz, M. (2014). Comparing the export coefficient approach with the soil and water assessment tool to predict phosphorous pollution: the Kan watershed case study. Water, Air, and Soil Pollution, 225, 2122.CrossRefGoogle Scholar
  8. Dövényi, Z. (Ed.). (2010). Magyarország kistájainak katasztere (Inventory of natural micro-regions of Hungary). Budapest: MTA FKI.Google Scholar
  9. Fejes, I., Farsang, A., & Puskás, I. (2012). Potential effects of the contaminated groundwater on human health in Szeged, SE Hungary. Carpathian Journal of Earth and Environmental Sciences, 7(3), 119–126.Google Scholar
  10. Green Side, K. (2008). Mikepércs külterület 080 hrsz. alatti települési folyékony hulladék leürítőhely rekultivációja. (The recultivation of the sewage disposal site at 080 Hrsz. in the outskirts of Mikepércs. Plan documentation.). Miskolc: Tervdokumentáció.Google Scholar
  11. Greenwood, N. N., & Earnshaw, A. (1999). Az elemek kémiája I. (Chemistry of elements I.). Budapest: Nemzeti Tankönyvkiadó.Google Scholar
  12. Harbaugh, A. W. (2005). MODFLOW-2005, the U.S. Geological Survey modular ground-water model—the ground-water flow process: U.S. Geological Survey Techniques and Methods 6-A16.Google Scholar
  13. Kerényi, A. (2003). Európa Természet- és Környezetvédelme (Nature- and environmental protection of Europe). Budapest: Nemzeti Tankönyv Kiadó Rt.Google Scholar
  14. Marton, L. (2009). Energiaszint változások az ÉK-Alföld fő vízadó rétegeiben. (Energy level changes in the main water-supplying ground layers in the north-eastern region of the Great Hungarian Plain.) (pp. 1–2). Debrecen: Debreceni műszaki közlemények.Google Scholar
  15. Müller, H. W., Dohrmann, R., Klosa, D., Rehder, S., & Eckelmann, W. W. (2009). Comparison of two procedures for particle‐size analysis: Köhn pipette and X‐ray granulometry. Journal of Plant Nutrition and Soil Science, 172(2), 172–179.CrossRefGoogle Scholar
  16. Nakaya, S., Natsume, H., Masuda, H., Mitamura, M., Biswas, D. K., & Seddique, A. A. (2011). Effect of groundwater flow on forming arsenic contaminated groundwater in Sonargaon, Bangladesh. Journal of Hydrology, 409, 724–736.CrossRefGoogle Scholar
  17. Panno, S. V., Hackley, K. C., Hwang, H. H., Greenberg, S., Krapac, I. G., Landsberger, S., & O’Kelly, D. J. (2002). Source identification of sodium and chloride contamination in natural waters: preliminary results. In 12th Annual Research Conference of the Illinois Groundwater Consortium. Research on Agrichemicals in Illinois. Carbondale, Illinois: Groundwater Status and Future Direction XII.Google Scholar
  18. Panno, S. V., Hackley, K. C., Hwang, H. H., Greenberg, S. E., Krapac, I. G., Landsberger, S., & O’Kelly, D. J. (2006). Characterization and identification of Na‐Cl sources in ground water. Groundwater, 44(2), 176–187.CrossRefGoogle Scholar
  19. Phan, K., Phan, S., Heng, S., Huoy, L., & Kim, K.-W. (2014). Assessing arsenic intake from groundwater and rice by residents in Prey Veng province, Cambodia. Environmental Pollution, 185, 84–89.CrossRefGoogle Scholar
  20. Phan, K., Phan, S., Huoy, L., Suy, B., Wong, M. H., Hashim, J. H., Yasin, M. S. M., Aljunid, S. M., Sthiannopkao, S., & Kim, K.-W. (2013). Assessing mixed trace elements in groundwater and their health risk of residents living in the Mekong River basin of Cambodia. Environmental Pollution, 182, 111–119.CrossRefGoogle Scholar
  21. Regadío, M., Ruiz, A. I., de Soto, I. S., Rastrero, M. R., Sánchez, N., Gismera, M. J., Sevilla, M. T., da Silva, P., Procopio, R. J., & Cuevas, J. (2012). Pollution profiles and physicochemical parameters in old uncontrolled landfills. Waste Management, 32, 482–497.CrossRefGoogle Scholar
  22. Rowe, R. K., Quigely, R. M., Brachman, R. W. I., & Booker, J. R. (2004). Barrier system for waste disposal facilities. London: Taylor and Francis.Google Scholar
  23. Sayyed, A. J., & Bhosle, B. A. (2011). Analysis of chloride, sodium and potassium in groundwater samples of Nanded City in Mahabharata, India. European Journal of Experimental Biology, 1(1), 74–82.Google Scholar
  24. Shahid, S., Nath, S. K., & Roy, J. (2000). Groundwater potential modelling in a soft rock area using a GIS. International Journal of Remote Sensing, 21(9), 1919–1924.CrossRefGoogle Scholar
  25. Sipos, P., Kovács Kis, V., Márton, E., Németh, T., May, Z., & Szalai, Z. (2012). Lead and zinc in the suspended particulate matter and settled dust in Budapest, Hungary. European Chemical Bulletin, 1(11), 449–454.Google Scholar
  26. Slack, R. J., Gronow, J. R., Hall, D. H., & Voulvoulis, N. (2007). Household hazardous waste disposal to landfill: using LandSim to model leachate migration. Environmental Pollution, 146, 501–509.CrossRefGoogle Scholar
  27. Slack, R. J., Gronow, J. R., & Voulvoulis, N. (2005). Household hazardous waste in municipal landfills: contaminants in leachate. Science of the Total Environment, 337, 119–137.CrossRefGoogle Scholar
  28. Somlyódi, L. (2002). A hazai vízgazdálkodás és stratégiai pillérei. In L. Somlyódi (Ed.), A hazai vízgazdálkodás stratégiai kérdései. (Strategic issues of national water management.) (pp. 23–74). Budapest: MTA.Google Scholar
  29. Sonneveld, M. P. W., Brus, D. J., & Roelsma, J. (2010). Validation of regression models for nitrate concentrations in the upper groundwater in sandy soils. Environmental Pollution, 158, 92–97.CrossRefGoogle Scholar
  30. Szabó, Gy., & Bessenyei, É. (2013). Studying groundwater pollution in the surroundings of a recultivated sewage disposal site in eastern Hungary. Journal of Selçuk University Natural and Applied Science, Special Issue (I) 1–12.Google Scholar
  31. Szabó, Sz., & Szabó, Gy. (2005). Mikepércs községi folyékony hulladék leürítőhely részleges környezetvédelmi felülvizsgálata. Debrecen: (Partial environmental review of the municipal sewage disposal site of Mikepércs town.) manuscript.Google Scholar
  32. Szabó, Gy., Szabó, Sz., Szabó, A., & Szemán, B. (2007a). Spatial and time variations of the groundwater quality of two different landscapes. In M. Boltižiar (Ed.), Implementation of landscape ecology in new and changing conditions (pp. 421–427). Bratislava: ILE Slovak Academy of Sciences.Google Scholar
  33. Szabó, Sz., Papp, L., & Szabó, Gy. (2007b). Investigation of a communal sewage disposal site from the aspect of landscape protection. In M. Boltižiar (Ed.), Implementation of landscape ecology in new and changing conditions (pp. 415–420). Bratislava: ILE Slovak Academy of Sciences.Google Scholar
  34. Szabó, Sz., Szabó, Gy., Fodor, Cs., & Papp, L. (2007c). Sewage disposal and its effects on groundwater and soil quality. In E. Kallabova, B. Frantal, & P. Klusacek (Eds.), Regions, localities and landscapes in new Europe. Brno, Czech Republic: 7th International Geographical Conference CONGEO’07, Enhanced Abstracts and Full Texts.Google Scholar
  35. Zhan, T. L. T., Guan, C., Xie, H. J., & Chena, Y. M. (2013). Vertical migration of leachate pollutants in clayey soils beneath an uncontrolled landfill at Huainan, China: a field and theoretical investigation. Science of the Total Environment, 470–471, 290–298.Google Scholar
  36. Zhang, H., Xu, W. L., & Hiscock, K. M. (2013). Application of MT3DMS and geographic information system to evaluation of groundwater contamination in the Sherwood Sandstone Aquifer, UK. Water, Air, and Soil Pollution, 224, 1438.CrossRefGoogle Scholar
  37. Zheng, C., & Wang, P. P. (1999). MT3DMS: a modular three-dimensional multispecies transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems; documentation and user’s guide, Contract Report SERDP-99-1. Vicksburg, MS: U.S. Army Engineer Research and Development Center.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • György Szabó
    • 1
    Email author
  • Éva Bessenyei
    • 1
  • Andor Hajnal
    • 2
  • István Csige
    • 3
  • Gergely Szabó
    • 4
  • Csaba Tóth
    • 4
  • József Posta
    • 1
    • 5
  • Tamás Mester
    • 1
  1. 1.Department of Landscape Protection and Environmental GeographyUniversity of DebrecenDebrecenHungary
  2. 2.Department of Mineralogy and GeologyUniversity of DebrecenDebrecenHungary
  3. 3.Institute for Nuclear Research of the Hungarian Academy of Science, Department of Earth and Environmental SciencesDebrecenHungary
  4. 4.Department of Physical Geography and GeoinformaticsUniversity of DebrecenDebrecenHungary
  5. 5.Department of Inorganic and Analytical ChemistryUniversity of DebrecenDebrecenHungary

Personalised recommendations