Identifying Hot Spots of Agricultural Nitrogen Loss Within the Baltic Sea Drainage Basin

  • Hans Estrup Andersen
  • Gitte Blicher-Mathiesen
  • Hans Thodsen
  • Peter Mejlhede Andersen
  • Søren E. Larsen
  • Per Stålnacke
  • Christoph Humborg
  • Carl-Magnus Mörth
  • Erik Smedberg


Agricultural management practices are among the major drivers of agricultural nitrogen (N) loss. Legislation and management incentives for measures to mitigate N loss should eventually be carried out at the individual farm level. Consequently, an appropriate scale to simulate N loss from a scientific perspective should be at the farm scale. A data set of more than 4000 agricultural fields with combinations of climate, soils and agricultural management which overall describes the variations found in the Baltic Sea drainage basin was constructed. The soil–vegetation–atmosphere model Daisy (Hansen et al. 2012) was used to simulate N loss from the root zone of all agricultural fields in the data set. From the data set of Daisy simulations, we identified the most important drivers for N loss by multiple regression statistics and developed a statistical N loss model. By applying this model to a basin-wide data set on climate, soils and agricultural management at a 10 × 10 km scale, we were able to calculate root-zone N losses from the entire Baltic Sea drainage basin and identify N loss hot spots in a consistent way and at a level of detail not hitherto seen for this area. Further, the root-zone N loss model was coupled to estimates of nitrogen retention in catchments separated into retention in groundwater and retention in surface waters allowing calculation of the coastal N loading.


Nitrogen Retention Baltic Sea Catchment modelling 


Compliance with Ethical Standards


This study is a contribution from the RECOCA project, which has received funding from the BONUS+ programme funded jointly by the European Community’s Seventh Framework Programme (FP7/2007–2013, grant agreement 217246) and Baltic Sea national funding institutions. Additional funding was for the Danish authors provided under the research alliance IMAGE of the Danish Strategic Research Council.

Conflict of Interest

The authors declare that they have no competing interests.


  1. Andersen, H. E., Kronvang, B., & Larsen, S. E. (1999). Agricultural practices and diffuse nitrogen pollution in Denmark: empirical leaching and catchment models. Water Science and Technology, 39(12), 257–264.CrossRefGoogle Scholar
  2. Arheimer, B., & Brandt, M. (1998). Modelling nitrogen transport and retention in the catchments of southern Sweden. Ambio, 27(6), 471–480.Google Scholar
  3. Benoist, G. and Marquer, P. (2006a). Farm structure in Denmark – 2005. Statistic in focus – Agirculture and Fisheries from Eurostat.8 pages.Google Scholar
  4. Benoist, G. and Marquer, P. (2006b). Farm structure in Sweden – 2005. Statistic in focus – Agirculture and Fisheries from Eurostat.8 pages.Google Scholar
  5. Benoist, G. and Marquer, P. (2006c). Farm structure in Poland – 2005. Statistic in focus – Agirculture and Fisheries from Eurostat.8 pages.Google Scholar
  6. Benoist, G. and Marquer, P. (2006d). Farm structure in Denmark – 2005. Statistic in focus – Agirculture and Fisheries from Eurostat.8 pages.Google Scholar
  7. Benoist, G. and Marquer, P. (2006e). Farm structure in Estonia – 2005. Statistic in focus – Agirculture and Fisheries from Eurostat.8 pages.Google Scholar
  8. Benoist, G. and Marquer, P. (2006f) Farm structure in Lithuania – 2005. Statistic in focus – Agirculture and Fisheries from Eurostat.8 pages.Google Scholar
  9. Benoist, G. and Marquer, P. (2006g). Farm structure in Latvia – 2005. Statistic in focus – Agirculture and Fisheries from Eurostat.8 pages.Google Scholar
  10. Benoist, G. and Marquer, P. (2006h). Farm structure in Finland – 2005. Statistic in focus – Agirculture and Fisheries from Eurostat.8 pages.Google Scholar
  11. Blicher-Mathiesen, G., Andersen, H. E., Carstensen, J., Børgesen, C. D., Hasler, B., & Windolf, J. (2014). Mapping of nitrogen risk areas. Agriculture, Ecosystems and Environment, 195, 149–160.CrossRefGoogle Scholar
  12. Britz W., Pérez I., Zimmermann A., Heckelei T. (2007). Definition of the CAPRI Core Modelling System and Interfaces with other Components of SEAMLESS-IF, SEAMLESS Report No.26, SEAMLESS integrated project, EU 6th Framework Programme, contract no. 010036–2,, 116 pp, ISBN no. 90-8585-114-9 and 978-90-8585-114-1.
  13. Büttner, G., Feranec, J. and Jaffrain, G. (2002). Corine land cover update 2000. EEA Technical report 89 ISBN: 92-9167-511-3. pp 56.Google Scholar
  14. Christensen, N. & Jørgensen, F. (1990). Næringsstofomsætning i marginaliseret landbrugsjord. NPo-rapport nr. A13. Miljøstyrelsen, pp 62 (in Danish).Google Scholar
  15. Donnelly, C., Dahné, J., Lindström, G., Rosberg, J., Strömqvist, J., Pers, C., Yang, W., & Arheimer, B. (2009). An evaluation of multi-basin hydrological modelling for predictions in ungauged basins. IAHS Publication, 333, 112–120.Google Scholar
  16. EEA (2007). European Environment Agency. CLC2006 Technical guidelines. EEA report No. 17/2007. Copenhagen, 2007.Google Scholar
  17. EMEP (2012). European Monitoring and Evaluation Programme.
  18. EU-JRC (2010). EU Joint Research Centre. Global Land Cover 2000.
  19. EU-JRC (2012). EU Joint Research Centre. Monitoring Agricultural Resources Unit (MARS).
  20. FAO (2003). Fertilizer use by crop in Poland. FAO.
  21. Ferguson, R. I. (1986). River loads underestimated by rating curves. Water Resources Research, 22, 74–76.CrossRefGoogle Scholar
  22. Grant, R., Blicher-Mathiesen, Andersen, H.E, Jensen, P.G., Pedersen, M & Rasmussen, P. (2001). Landovervågningsoplande 2001. National Environmental Research Institute. Research report no. 420. p126.Google Scholar
  23. Grant, R., Blicher-Mathiesen, G., Jensen, P.G., Hansen, B. & Thorling, L. (2011). Landovervågningsoplande 2010. NOVANA. Aarhus University, DCE – Danish Center for Energy and Environment. 130 pages. Scientific report from DCE – Danish Center for Energy and Environment no. 3 (in Danish).Google Scholar
  24. Grimvall, A., & Stålnacke, P. (1996). Statistical methods for source apportionment of riverine loads of pollutants. Environmetrics, 7(2), 201–213.CrossRefGoogle Scholar
  25. Grizzetti, B., Bouraoui, F. & Aloe, A. (2007). Spatialised nutrient balance for Europe,, EUR Rep. 22692 EN, 98 pp., Univ. Pierre et Marie Curie-Paris 6, Paris.Google Scholar
  26. Gundersen, P., Sevel, L., Christiansen, J. R., Vesterdal, L., Hansen, K., & Bastrup-Birk, A. (2009). Do indicators of nitrogen retention and leaching differ between coniferous and broadleaved forest in Denmark. Forest Ecology and Management, 258, 1137–1146.CrossRefGoogle Scholar
  27. Hansen, S., Thirup, C., Refsgaard, J. C., & Jensen, J. S. (2001). Modelling of nitrate leaching at different scales—application of the Daisy. In M. Shaffer, M. Liwang, & S. Hansen (Eds.), Modeling carbon and nitrogen dynamics for soil management (pp. 511–547). Boca Raton: Lewis Publishers.CrossRefGoogle Scholar
  28. Hansen, S., Abrahamsen, P., Petersen, C. T., & Styczen, M. (2012). Daisy: model use, calibration and validation. Transactions of the ASABE, 55(4), 1315–1333.CrossRefGoogle Scholar
  29. Heidmann, T., Tofteng, C., Abrahamsen, P., Plauborg, F., Hansen, S., Battilani, A., Coutinho, J., Dolezal, F., Mazurczyk, W., Ruiz, J. D. R., Takác, J., & Vacek, J. (2008). Calibration procedure for a potato crop growth model using information from across Europe. Ecological Modelling, 211(1–2), 209–223.CrossRefGoogle Scholar
  30. HELCOM (2004). The fourth Baltic Sea pollution load compilation (PLC-4), Baltic Sea Environment Proceedings, Baltic Sea Environment Proceedings, 93, 133 pp., 2004.Google Scholar
  31. HELCOM (2011). The Fifth Baltic Sea Pollution Load Compilation (PLC-5). Balt. Sea Environ. Proc. No. 128.Google Scholar
  32. Høgh-Jensen, H., Loges, R., Jensen, E.S., Jørgenen, F.V. & Vinther, F.P. (2003). Empirical model for quantification of symbiotic nitrogen fixation in leguminous crops. Agricultural Systems, 1–31.
  33. Hong, B., Swaney, D.P., Mörth, C.M., Smedberg, E., Hägg, H.E., and Humborg, C. (2011). NANI/NAPI Calculator Toolbox Version 2.0 Documentation: net anthropogenic nutrient inputs in Baltic Sea catchments (March, 2011). Baltic Nest Institute Sweden. 95 pages.Google Scholar
  34. Humborg, C., Danielsson, Å., Sjöberg, B., & Green, M. (2003). Nutrient land-sea fluxes in oligotrophic and pristine estuaries of the Gulf of Bothnia, Baltic Sea. Estuarine, Coastal and Shelf Science, 56, 781–793.CrossRefGoogle Scholar
  35. HWSD (2008). Harmonized World Soil Database (HWSD), version 1.1, March 2008, published by FAO, IIASA, ISRIC, ISSCAS, JRC (available online).Google Scholar
  36. Kronvang, B., Andersen, H. E., Børgesen, C. D., Dalgaard, T., Larsen, S. E., Bøgestrand, J., & Blicher-Mathiesen, G. (2008). Effects of policy measures implemented in Denmark on nitrogen pollution of the aquatic environment. Environmental Science & Policy, 144–152.Google Scholar
  37. Larsson, U., Elmgren, R., & Wulff, F. (1985). Eutrophication of the Baltic Sea—causes and consequences. Ambio, 14, 9–14.Google Scholar
  38. Lehmann, E. L., & Casella, G. (1998). Theory of point estimation (2nd ed.). New York: Springer. 589 pages.Google Scholar
  39. Lepistö, A., Granlund, K., Kortelainen, P., & Räike, A. (2006). Nitrogen in river basins: sources, retention in the surface waters and peatlands, and fluxes to estuaries in Finland. Science of the Total Environment, 365, 238–259.CrossRefGoogle Scholar
  40. Liden, R., Vasilyev, A., Stålnacke, P., Loigu, E., & Wittgren, H. B. (1999). Nitrogen source apportionment—a comparison between a dynamic and a statistical model. Ecological Modelling, 114(2–3), 235–250.CrossRefGoogle Scholar
  41. Mattson, T., Finer, L., Kortelainen, P., & Sallantaus, T. (2003). Brook water quality and background leaching from unmanaged forested catchments in Finland. Water, Air, and Soil Pollution, 147, 275–297.CrossRefGoogle Scholar
  42. Mörth, C.-M., Humborg, C., Eriksson, H., Danielson, A., Medina, M. R., Löfgren, S., Swaney, D. P., & Rahm, L. (2007). Modeling riverine nutrient transport to the Baltic Sea: a large-scale approach. Ambio, 36(2–3), 124–133.CrossRefGoogle Scholar
  43. Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I—a discussion of principles. Journal of Hydrology, 10(3), 282–290.CrossRefGoogle Scholar
  44. Nielsen, K. E., Ladekarl, U. L., & Nørnberg, P. (1999). Dynamic soil processes on heathland due to changes in vegetation to oak and Sitka spruce. Forest Ecology and Management, 114, 107–116.CrossRefGoogle Scholar
  45. Pyykkönen, S., Grönroos, J., Rankinen, K., Laitinen, P., Karhu, E. & Granlund, K. (2004). Ympäristötuen mukaiset viljelytoimenpiteet ja niiden vaikutukset vesistökuormitukseen 2000–2002. Finnish Environment 711, Finnish Environment Institute. Edita Prima Oy, Helsinki.p119.Google Scholar
  46. Rawlings, J. O. (1988). Applied regression analysis. Belmont: Wadsworth and Brooks/Cole.Google Scholar
  47. Salo, T., Lemola, R., & Esala, M. (2007). National and regional net nitrogen balances in Finland in 1990–2005. Agricultural and Food Science, 16, 366–375.CrossRefGoogle Scholar
  48. Schilling, C., Behrendt, H., Blaschke, A., Danielescu, S., Dimova, G., Gabriel, O., Heinecke, U., Kovacs, A., Lampert, C., Postolache, C., Schreiber, H., Strauss, P., & Zessner, M. (2005). Lessons learned from investigations on case study level for modelling of nutrient emissions in the Danube Basin. Water Science and Technology, 51(11), 183–191.Google Scholar
  49. Snedecor, G.W., Cochran, W.G. (1989). Statistical Methods. Iowa State University Press, Ames, Iowa. Taylor, R., Florczyk, H., Jakubowska, L., 1989. Run-off of nutrients from river watersheds used for agricultural purposes Environ. Prot. Eng., 1245065.Google Scholar
  50. Stålnacke, P., Pengerud, A., Vassiljev, A., Smedberg, E., Mörth, C.-M., Hägg, H. E., Humborg, C., & Andersen, H. E. (2015). Nitrogen surface water retention in the Baltic Sea drainage basin. Hydrology and Earth System Sciences, 19, 981–996.CrossRefGoogle Scholar
  51. Statistics Belarus. (2010). Agriculture of the Republic of Belarus. Statistical Book. 270 pages.Google Scholar
  52. Statistics Belarus. (2013). Yearbook of the Republic of Belarus. 557 pages.Google Scholar
  53. Statistics Denmark. (2001). Livestock density in agriculture 2000. Statistisk Efterretning No.13. p 41.Google Scholar
  54. Statistics Denmark. (2006). Agricultural statistics 2005. 251 pages.Google Scholar
  55. Statistics Estonia. (2001). 2001 Agricultural Census.
  56. Statistics Estonia. (2013).
  57. Statistics Finland. (2004). Yearbook Farm Statistics. Information Centre of the Ministry of Agriculture and Forestry. Helsinki. 2004.Google Scholar
  58. Statistics Lithuania. (2013).
  59. Statistics Sweden. (2002). Use of fertilizer and manure in agriculture in 2000/2001.Report MI 30 SM 2002. (In Swedish, summary in English). 94 p.Google Scholar
  60. Sweitzer, J., Langaas, S., & Folke, C. (1996). Land cover and population density in the Baltic Sea drainage basin: a GIS database. Ambio, 25, 191–198.Google Scholar
  61. van Genuchten, M. T. (1980). A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892–898.CrossRefGoogle Scholar
  62. Vassiljev, A., & Stålnacke, P. (2005). Source apportionment of nutrients in the Lake Peipsi drainage basin—experiences from a statistical model. Water Science and Technology, 51(3–4), 309–317.Google Scholar
  63. Vassiljev, A., Blinova, I., & Ennet, P. (2008). Source apportionment of nutrients in Estonian rivers. Desalination, 226(1–3), 222–230.CrossRefGoogle Scholar
  64. Voss, M., Dippner, J. W., Humborg, C., Hürdler, J., Korth, F., Neumann, T., Schernewski, G., & Venohr, M. (2011). History and scenarios of future development of Baltic Sea eutrophication. Estuarine, Coastal and Shelf Science, 92, 307–322.CrossRefGoogle Scholar
  65. Wösten, J. H. M., Pachepsky, Y. A., & Rawl, W. J. (2001). Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. Journal of Hydrology, 251, 123–150.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Hans Estrup Andersen
    • 1
  • Gitte Blicher-Mathiesen
    • 1
  • Hans Thodsen
    • 1
  • Peter Mejlhede Andersen
    • 1
  • Søren E. Larsen
    • 1
  • Per Stålnacke
    • 2
  • Christoph Humborg
    • 3
  • Carl-Magnus Mörth
    • 3
  • Erik Smedberg
    • 3
  1. 1.Department of Bioscience and Baltic Nest Institute DenmarkAarhus UniversitySilkeborgDenmark
  2. 2.Department of Water Quality and HydrologyBioforsk, Norwegian Institute for Agricultural and Environmental ResearchÅsNorway
  3. 3.Baltic Nest Institute Sweden, Baltic Sea CentreStockholm UniversityStockholmSweden

Personalised recommendations