Water, Air, & Soil Pollution

, 227:43 | Cite as

Mitigation of Biofilm Colonization on Various Surfaces in a Model Water Flow System by Use of UV Treatment

  • Liron Friedman
  • Tali Harif
  • Moshe Herzberg
  • Hadas MamaneEmail author


Medium-pressure (MP) ultra violet (UV) disinfection was suggested as a pre-treatment to control biofouling in a semi-scale flow-through model water system. Water, spiked with Pseudomonas aeruginosa, nutrients, and carbon source, was flowed through the system and biofilm formation on glass, PVC, and stainless steel 316 slides was examined following 24 h runs. Following UV exposure a ∼99 % reduction in biovolume and average thickness of the biofilm was observed on all surfaces examined, despite clear differences in the virgin surface characteristics analyzed using contact angle, zeta potential, and atomic force microscopy (AFM). The findings support the stochastic behavior of biological systems in relation to predictions derived from conventional theories. The reduction of viable microbial counts seems to be the major mechanism in reducing the actual biofilm formation rate and the overall effect UV provides could indeed render it an effective tool in mitigating biofilm formation in water distribution systems.


Ultraviolet Water Biofilm Biovolume Flow-through reactor 



This work was supported by the Israeli Ministry of Industry, Trade and Labor within the Magnet funding program. The authors would like to thank Mr. Eli Margalit, Atlantium, for his help and support and also like to deeply thank Prof. Eliora Ron, Tel-Aviv University, for her guidance and support throughout this work.

Supplementary material


(MP4 3692 kb)


(MP4 1992 kb)


  1. Bakker, D. P., Busscher, H. J., & Van der Mei, H. C. (2002). Bacterial deposition in a parallel plate and a stagnation point flow chamber: microbial adhesion mechanisms depend on the mass transport conditions. Microbiology, 148, 597–603.CrossRefGoogle Scholar
  2. Bakker, D. P., Postmus, B. R., Busscher, H. J., & Van der Mei, H. C. (2004). Bacterial strains isolated from different niches can exhibit different patterns of adhesion to substrata. Society, 70, 3758–3760. doi: 10.1128/AEM.70.6.3758.Google Scholar
  3. Ben-David, A., & Davidson, C. E. (2014). Estimation method for serial dilution experiments. Journal of Microbiological Methods, 107, 214–221. doi: 10.1016/j.mimet.2014.08.023.CrossRefGoogle Scholar
  4. Bendinger, B., Rijnaarts, H. H. M., Altendorf, K., & Zehnder, A. J. B. (1993). Physicochemical cell surface and adhesive properties of coryneform bacteria related to the presence and chain length of mycolic acids. Applied and Environmental Microbiology, 59(11), 3973–3977.Google Scholar
  5. Boks, N. P., Norde, W., Van der Mei, H. C., & Busscher, H. J. (2008). Forces involved in bacterial adhesion to hydrophilic and hydrophobic surfaces. Microbiology, 154, 3122–3133. doi: 10.1099/mic.0.2008/018622-0.CrossRefGoogle Scholar
  6. Bolton, J. R., & Linden, K. G. (2003) Standardization of Methods for Fluence (UV dose) Determination in Bench-scale UV Experiments. Journal of Environmental Engineering-ASCE., 129(3), 209–215.Google Scholar
  7. Boulange-Petermann, L., Doren, A., Baroux, B., & Bellon-Fontaine, M.-N. (1995). Zeta potential measurements on passive metals. Journal of Colloid and Interface Science, 171(1), 179–186.Google Scholar
  8. Branda, S. S., Vik, A., Friedman, L., & Kolter, R. (2005) Biofilms: the matrix revisited. Trends in Microbiology 13, 20–26.Google Scholar
  9. Buse, H. Y., Lu, J., Struewing, I. T., & Ashbolt, N. J. (2014). Preferential colonization and release of Legionella pneumophila from mature drinking water biofilms grown on copper versus unplasticized polyvinylchloride coupons. International Journal of Hygiene and Environmental Health, 217(2-3), 219–225. doi: 10.1016/j.ijheh.2013.04.005.CrossRefGoogle Scholar
  10. Camper, A. K., Brastrup, K., Sandvig, A., Clement, J., Spencer, C., & Capuzzi, A. J. (2003). Effect of distribution system materials on bacterial regrowth. Journal of American Water Works Association, 95(7), 107–121.Google Scholar
  11. Chao, Y., Mao, Y., Wang, Z., & Zhang, T. (2015). Diversity and functions of bacterial community in drinking water biofilms revealed by high-throughput sequencing. Scientific Reports, 5, 10044. doi: 10.1038/srep10044.CrossRefGoogle Scholar
  12. Chia, T. W. R., Nguyen, V. T., McMeekin, T., Fegan, N., & Dykes, G. A. (2011). Stochasticity of bacterial attachment and its predictability by the extended Derjaguin-Landau-Verwey-Overbeek theory. Applied and Environmental Microbiology, 77, 3757–3764. doi: 10.1128/AEM.01415-10.CrossRefGoogle Scholar
  13. Cochran, W. G. (1950). Estimation of bacterial densities by means of the most probable number. Biometrics, 6(2), 105–116. doi: 10.2307/3001491.CrossRefGoogle Scholar
  14. Comte, S., Guibaud, G., & Baudu, M. (2008). Biosorption properties of extracellular polymeric substances (EPS) towards Cd, Cu and Pb for different pH values. Journal of Hazardous Materials, 151(1), 185–193. doi: 10.1016/j.jhazmat.2007.05.070.CrossRefGoogle Scholar
  15. Costerton, J. W., Stewart, P. S., & Greenberg, E. P. (1999). Bacterial biofilms: a common cause of persistent infections. Science (New York, N.Y.), 284, 1318–1322. doi: 10.1126/science.284.5418.1318.CrossRefGoogle Scholar
  16. Davey, M. E., Caiazza, N. C., & O’Toole, G. A. (2003) Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. Journal of Bacteriology, 185(3), 1027–1036.Google Scholar
  17. Denkhaus, E., Meisen, S., Telgheder, U., & Wingender, J. (2007). Chemical and physical methods for characterisation of biofilms. Microchimica Acta, 158, 1–27. doi: 10.1007/s00604-006-0688-5.CrossRefGoogle Scholar
  18. Docoslis, A, Wu, W., Giese, R. F., & Van Oss C. J. (2001). Influence of macroscopic and microscopic interactions on kinetic rate constants. III. Determination of von Smoluchowski’s f-factor for HSA adsorption onto various metal oxide microparticles, using the extended DLVO approach. Colloids and Surfaces BBiointerfaces, 25(1), 97. doi: 10.1016/S0927-7765(02)00012-7.
  19. Dykstra, T. S., O’Leary, K. C., Chauret, C., Andrews, R. C., & Gagnon, G. A. (2007). Impact of UV and secondary disinfection on microbial control in a model distribution system. Journal of Environmental Engineering and Science, 6, 147–155. doi: 10.1139/s06-046.CrossRefGoogle Scholar
  20. Eginton, P. J., Gibson, H., Holah, J., Handley, P. S., & Gilbert, P. (1995). The influence of substratum properties on the attachment of bacterial cells. Colloids and Surfaces B: Biointerfaces. doi: 10.1016/0927-7765(95)01219-9.Google Scholar
  21. Elimelech, M., Chen, W. H., & Waypa, J. J. (1994). Measuring the zeta (electrokinetic) potential of reverse osmosis membranes by a streaming potential analyzer. Desalination, 95, 269–286. doi: 10.1016/0011-9164(94)00064-6.CrossRefGoogle Scholar
  22. Elimelech, M., Chen, J. Y., & Kuznar, Z. A. (2003). Particle deposition onto solid surfaces with micropatterned charge heterogeneity: The “hydrodynamic bump” effect. Langmuir, 19(17), 6594–6597. doi: 10.1021/la034516i.CrossRefGoogle Scholar
  23. Flemming, H. C. (2002). Biofouling in water systems - Cases, causes and countermeasures. Applied Microbiology and Biotechnology, 59, 629–640. doi: 10.1007/s00253-002-1066-9.CrossRefGoogle Scholar
  24. Flemming, H.-C., & Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology, 8(9), 623–633. doi: 10.1080/0892701031000072190.Google Scholar
  25. Flemming, H. C., Schaule, G., Griebe, T., Schmitt, J., & Tamachkiarowa, A. (1997). Biofouling - the Achilles heel of membrane processes. Desalination, 113, 215–225. doi: 10.1016/S0011-9164(97)00132-X.CrossRefGoogle Scholar
  26. Fletcher, M., & Loeb, G. I. (1979). Influence of substratum characteristics on the attachment of a marine pseudomonad to solid surfaces. Applied and Environmental Microbiology, 37, 67–72.Google Scholar
  27. Garrett, T. R., Bhakoo, M., & Zhang, Z. (2008). Bacterial adhesion and biofilms on surfaces. Progress in Natural Science, 18, 1049–1056. doi: 10.1016/j.pnsc.2008.04.001.CrossRefGoogle Scholar
  28. Glaze, W. H. (1987). Drinking-water treatment with ozone. Ozone is a powerful disinfectant and oxidant, but its chemical byproducts need to be better understood. Environmental Science and Technology, 21(3), 224–230.CrossRefGoogle Scholar
  29. Greenberg, R. A., Tompkin, R. B., Bladel, B. O., Kittaka, R. S., & Anellis, A. (1966). Incidence of mesophilic Clostridium spores in raw pork, beef, and chicken in processing plants in the United States and Canada. Applied Microbiology, 14(5), 789–793.Google Scholar
  30. Hallam, N. B., West, J. R., Forster, C. F., & Simms, J. (2001). The potential for biofilm growth in water distribution systems. Water Research, 35(17), 4063–4071. doi: 10.1016/S0043-1354(01)00248-2.CrossRefGoogle Scholar
  31. Harif, T., Elifantz, H., Margalit, E., Herzberg, M., Lichi, T., & Minz, D. (2011). The effect of UV pre-treatment on biofouling of BWRO membranes: a field study. Desalination and Water Treatment, 31(October 2010), 151–163. doi: 10.5004/dwt.2011.2377.CrossRefGoogle Scholar
  32. Haznedaroglu, B. Z., Bolster, C. H., & Walker, S. L. (2008). The role of starvation on Escherichia coli adhesion and transport in saturated porous media. Water Research, 42(6-7), 1547–1554. doi: 10.1016/j.watres.2007.10.042.CrossRefGoogle Scholar
  33. Heydorn, A., Nielsen, A. T., Hentzer, M., Sternberg, C., Givskov, M., Ersboll, B. K., & Molin, S. (2000). Quantification of biofilm structures by the novel computer program COMSTAT. Image Processing, 146(10), 2395–2407. doi: 10.1099/00221287-146-10-2395.
  34. Hori, K., & Matsumoto, S. (2010). Bacterial adhesion: from mechanism to control. Biochemical Engineering Journal, 48, 424–434. doi: 10.1016/j.bej.2009.11.014.CrossRefGoogle Scholar
  35. Huber, B., Riedel, K., Hentzer, M., Heydorn, A., Gotschlich, A., Givskov, M. C., Molin, S., & Eberl, L. (2001) The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology-SGM, 147, 2517–2528.Google Scholar
  36. Israelachvili, J. N. (2011). Contrasts between Intermolecular, Interparticle, and Intersurface Forces. Intermolecular and Surface Forces. 205–222. doi: 10.1016/B978-0-12-375182-9.10011-9.
  37. Jarvis, B. (1989) Statistical aspects of the microbiological analysis of foods. Progress in industrial microbiology, 21, 179. Elsevier science publishers. Amsterdam, Netherlands. New York, New York. doi: 10.1002/jobm.3620300812.
  38. Ji, P., Parks, J., Edwards, M. A., & Pruden, A. (2015). Impact of water chemistry, pipe material and stagnation on the building plumbing microbiome. Plos One, 10(10), e0141087. doi: 10.1371/journal.pone.0141087.CrossRefGoogle Scholar
  39. Kierek-Pearson, K., & Karatan, E. (2005). Biofilm development in bacteria. Advances in Applied Microbiology, 57(05), 79–111. doi: 10.1016/S0065-2164(05)57003-5.CrossRefGoogle Scholar
  40. Kumar, C. G., & Anand, S. (1998). Significance of microbial biofilms in food industry: a review. International Journal of Food Microbiology, 42(1-2), 9–27. doi: 10.1016/S0168-1605(98)00060-9.CrossRefGoogle Scholar
  41. Lakretz, A., Ron, E. Z., & Mamane, H. (2010). Biofouling control in water by various UVC wavelengths and doses. Biofouling, 26(908309149), 257–267. doi: 10.1080/08927010903484154.CrossRefGoogle Scholar
  42. Lakretz, A., Ron, E. Z., & Mamane, H. (2011). Biofilm control in water by a UV-based advanced oxidation process. Biofouling, 27(931225124), 295–307. doi: 10.1080/08927014.2011.561923.CrossRefGoogle Scholar
  43. Lee, D.-G., Park, S.-J., & Kim, S.-J. (2007). Influence of pipe materials and VBNC cells on culturable bacteria in a chlorinated drinking water model system. Journal of Microbiology and Biotechnology, 17(9), 1558–1562.Google Scholar
  44. Legan, J. D., Vandeven, M. H., Dahms, S., & Cole, M. B. (2001). Determining the concentration of microorganisms controlled by attributes sampling plans. Food Control, 12(3), 137–147. doi: 10.1016/S0956-7135(00)00033-5.CrossRefGoogle Scholar
  45. Liu, H., & Fang, H. H. P. (2002). Extraction of extracellular polymeric substances (EPS) of sludges. Journal of Biotechnology, 95(3), 249–256. doi: 10.1016/S0168-1656(02)00025-1.CrossRefGoogle Scholar
  46. Lund, V., & Ormerod, K. (1995). The influence of disinfection processes on biofilm formation in water distribution systems. Water Research, 29(4), 1013–1021. doi: 10.1016/0043-1354(94)00280-K.CrossRefGoogle Scholar
  47. Ma, H., Winslow, C. J., & Logan, B. E. (2008). Spectral force analysis using atomic force microscopy reveals the importance of surface heterogeneity in bacterial and colloid adhesion to engineered surfaces. Colloids and Surfaces B: Biointerfaces, 62, 232–237. doi: 10.1016/j.colsurfb.2007.10.007.CrossRefGoogle Scholar
  48. Mamane, H., Kohn, C., & Adin, A. (2008). Characterizing shape of effluent particles by image analysis. Separation Science and Technology, 43(November 2013), 1737–1753. doi: 10.1080/01496390801974662.CrossRefGoogle Scholar
  49. McCabe, W. L., Smith, J. C., & Harriott, P. (1993). Unit operations of chemical engineering (Vol. 5). New York: McGraw-Hill.Google Scholar
  50. Metz, D. H., Meyer, M., Dotson, A., Beerendonk, E., & Dionysiou, D. D. (2011). The effect of UV/H2O2 treatment on disinfection by-product formation potential under simulated distribution system conditions. Water Research, 45(13), 3969–3980. doi: 10.1016/j.watres.2011.05.001.CrossRefGoogle Scholar
  51. Momba, M. N. B., Cloete, T. E., Venter, S. N., & Kfir, R. (1998). Evaluation of the impact of disinfection processes on the formation of biofilms in potable surface water distribution systems. Water Science and Technology. doi: 10.1016/S0273-1223(98)00703-3.Google Scholar
  52. Momba, M. N. B., Kfir, R., Venter, S. N., & Cloete, T. E. (2000). An overview of biofilm formation in distribution systems and its impact on the deterioration of water quality. Water SA, 26(1), 59–66.Google Scholar
  53. Morgan, J. W., Forster, C. F., & Evison, L. (1990). A comparative study of the nature of biopolymers extracted from anaerobic and activated sludges. Water Research, 24(6), 743–750. doi: 10.1016/0043-1354(90)90030-A.CrossRefGoogle Scholar
  54. Moritz, M. M., Flemming, H. C., & Wingender, J. (2010). Integration of Pseudomonas aeruginosa and Legionella pneumophila in drinking water biofilms grown on domestic plumbing materials. International Journal of Hygiene and Environmental Health, 213(3), 190–197. doi: 10.1016/j.ijheh.2010.05.003.CrossRefGoogle Scholar
  55. Munshi, A. H., Saeed, M. O., Green, T. N., Al-hamza, A., Mohammad, A, & Ismail, A. R. (2005). Impact of UV irradiation on controlling biofouling problems in NF-SWRO Desalination Process, 1–12. International Desalination Association (IDA) World Congress: Conference Singapore.Google Scholar
  56. Murphy, H. M., Payne, S. J., & Gagnon, G. A. (2008). Sequential UV- and chlorine-based disinfection to mitigate Escherichia coli in drinking water biofilms. Water Research, 42, 2083–2092. doi: 10.1016/j.watres.2007.12.020.CrossRefGoogle Scholar
  57. Oguma, K., Katayama, H., & Ohgaki, S. (2002). Photoreactivation of Escherichia coli after low- or medium-pressure UV disinfection determined by an endonuclease sensitive site assay. Applied and Environmental Microbiology, 68, 6029–6035. doi: 10.1128/AEM.68.12.6029-6035.2002.CrossRefGoogle Scholar
  58. Percival, S. L., Knapp, J. S., Edyvean, R., & Wales, D. S. (1998). Biofilm development on stainless steel in mains water. Water Research, 32(1), 243–253. doi: 10.1016/S0043-1354(97)00132-2.CrossRefGoogle Scholar
  59. Perni, S., Preedy, E. C., & Prokopovich, P. (2013). Success and failure of colloidal approaches in adhesion of microorganisms to surfaces. Advances in Colloid and Interface Science, 206, 265–274. doi: 10.1016/j.cis.2013.11.008.CrossRefGoogle Scholar
  60. Pirnie, M., Linden, K. G., & Malley, J. P. J. (2006). Ultraviolet disinfection guidance manual for the final long term 2 enhanced surface water treatment rule. Environmental Protection, 2(November), 1–436.Google Scholar
  61. Pringle, J. H., & Fletcher, M. (1983). Influence of substratum wettability on attachment of freshwater bacteria to solid-surfaces. Applied and Environmental Microbiology, 45, 811–817.Google Scholar
  62. Rand, J. L., Hofmann, R., Alam, M. Z. B., Chauret, C., Cantwell, R., Andrews, R. C., & Gagnon, G. A. (2007). A field study evaluation for mitigating biofouling with chlorine dioxide or chlorine integrated with UV disinfection. Water Research, 41, 1939–1948. doi: 10.1016/j.watres.2007.02.004.CrossRefGoogle Scholar
  63. Schwartz, T., Hoffmann, S., & Obst, U. (1998). Formation and bacterial composition of young, natural biofilms obtained from public bank-filtered drinking water systems. Water Research, 32(9), 2787–2797. doi: 10.1016/S0043-1354(98)00026-8.CrossRefGoogle Scholar
  64. Schwartz, T., Hoffmann, S., & Obst, U. (2003). Formation of natural biofilms during chlorine dioxide and u.v. disinfection in a public drinking water distribution system. Journal of Applied Microbiology, 95, 591–601. doi: 10.1046/j.1365-2672.2003.02019.x.CrossRefGoogle Scholar
  65. Skjevrak, I., Due, A., Gjerstad, K. O., & Herikstad, H. (2003). Volatile organic components migrating from plastic pipes (HDPE, PEX and PVC) into drinking water. Water Research, 37, 1912–1920. doi: 10.1016/S0043-1354(02)00576-6.CrossRefGoogle Scholar
  66. Stewart, P. S., Peyton, B. M., Drury, W. J., & Murga, R. (1993). Quantitative observations of heterogeneities in Pseudomonas aeruginosa biofilms. Applied and Environmental Microbiology, 59, 327–329. ISI:A1993KF24900054.Google Scholar
  67. Stone, J. H., Gabriel, M. M., & Ahearn, D. G. (1999). Adherence of Pseudomonas aeruginosa to inanimate polymers including biomaterials. Journal of Industrial Microbiology & Biotechnology, 23(1), 713–717. doi: 10.1038/sj.jim.2900686.CrossRefGoogle Scholar
  68. Stover, C., Pham, X., Erwin, A., & Mizoguchi, S. (2000). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature, 406(August), 959–964. doi: 10.1038/35023079.Google Scholar
  69. Tsuneda, S., Aikawa, H., Hayashi, H., & Hirata, A. (2004). Significance of cell electrokinetic properties determined by soft-particle analysis in bacterial adhesion onto a solid surface. Journal of Colloid and Interface Science, 279(2), 410–417. doi: 10.1016/j.jcis.2004.06.070.CrossRefGoogle Scholar
  70. Van Loosdrecht, M. C., Lyklema, J., Norde, W., & Zehnder, A. J. (1990). Influence of interfaces on microbial activity. Microbiological Reviews, 54(1), 75–87.Google Scholar
  71. Van Oss, C. J., Docoslis, A., Wu, W., & Giese, R. F. (1999) Influence of macroscopic and microscopic interactions on kinetic rate constants: I. Role of the extended DLVO theory in determining the kinetic adsorption constant of proteins in aqueous media, using von Smoluchowski’s approach. Colloids and Surfaces B: Biointerfaces, 14, 99–104.Google Scholar
  72. Van Oss, C., Good, R., & Chaudhury, M. (1986). The role of van der Waals forces and hydrogen bonds in “hydrophobic interactions” between biopolymers and low energy surfaces. Journal of Colloid and Interface Science, 111(2), 378–390. doi: 10.1016/0021-9797(86)90041-X.CrossRefGoogle Scholar
  73. Walker, S. L. (2005). The role of nutrient presence on the adhesion kinetics of Burkholderia cepacia G4g and ENV435g. Colloids and Surfaces B: Biointerfaces, 45(3-4), 181–188. doi: 10.1016/j.colsurfb.2005.08.007.CrossRefGoogle Scholar
  74. Wang, H., Hu, C., & Hu, X. (2014). Effects of combined UV and chlorine disinfection on corrosion and water quality within reclaimed water distribution systems. Engineering Failure Analysis, 39, 12–20. doi: 10.1016/j.engfailanal.2014.01.009.CrossRefGoogle Scholar
  75. Wenjun, S., & Wenjun, L. (2009). Impact of the ultraviolet disinfection process on biofilm control in a model drinking water distribution system. Environmental Engineering Science, 26(4), 809–816. doi: 10.1089/ees.2008.0204.CrossRefGoogle Scholar
  76. Zhang, W., & Hallström, B. (1990). Membrane characterization using the contact angle technique I. Methodology of the captive bubble technique. Desalination, 79, 1–12. doi: 10.1016/0011-9164(90)80067-L.CrossRefGoogle Scholar
  77. Zhu, Y., Wang, H., Li, X., Hu, C., Yang, M., & Qu, J. (2014). Characterization of biofilm and corrosion of cast iron pipes in drinking water distribution system with UV/Cl2 disinfection. Water Research, 60, 174–181. doi: 10.1016/j.watres.2014.04.035.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Liron Friedman
    • 1
  • Tali Harif
    • 2
  • Moshe Herzberg
    • 3
  • Hadas Mamane
    • 1
    Email author
  1. 1.School of Mechanical Engineering, Faculty of EngineeringTel Aviv UniversityTel-AvivIsrael
  2. 2.Atlantium Technologies Ltd.Bet-ShemeshIsrael
  3. 3.Department of Desalination and Water Treatment, Zuckerberg Institute for Water ResearchBen-Gurion University of the NegevBeershebaIsrael

Personalised recommendations