Advertisement

Water, Air, & Soil Pollution

, 226:427 | Cite as

Harmful Effects of the Dermal Intake of Commercial Formulations Containing Chlorpyrifos, 2,4-D, and Glyphosate on the Common Toad Rhinella arenarum (Anura: Bufonidae)

  • Rafael C. Lajmanovich
  • Andrés M. Attademo
  • María F. Simoniello
  • Gisela L. Poletta
  • Celina M. Junges
  • Paola M. Peltzer
  • Paula Grenón
  • Mariana C. Cabagna-Zenklusen
Article

Abstract

Amphibians have complex life cycles with aquatic and terrestrial life and uncovered skins; therefore, they are exposed to chemical contamination, where dermal exposure is a significant route for pesticide uptake in both habitats. In this study, measurements in blood samples such as levels of butyrylcholinesterase (BChE), carboxylesterase (CbE), glutathione S-transferases (GST), thiobarbituric acid reactive substances (TBARS), modified alkaline comet assay (ACA) for detection of oxidized bases (FPG and Endo III sites), as well as the ratio of heterophils and lymphocytes (H/L), were evaluated as non-destructive biomarkers to monitor dermal pesticide exposure in male toads of Rhinella arenarum. Toads were exposed to a solution containing a nominal concentration of commercial formulations of the insecticide chlorpyrifos (CPF, 10 mg/L), and herbicides 2,4-D and glyphosate (GLY) (20 mg/L, respectively). After 48 h of exposure, the levels of plasma B-sterases (BChE and CbE) were inhibited (55 and 43 %, respectively) in toads exposed to CPF. Also, the activity of GST was inducted for dermal exposure to 2,4-D, as well as the levels of TBARS due to CPF exposure. Besides this, CPF and 2,4-D exposure induced oxidative DNA damage, and the H/L ratio decreased for the both herbicide exposures. Our results showed that exposure via dermal uptake to CPF, 2,4-D, and GLY in the common toad R. arenarum induced neurotoxicity, oxidative stress, and immunological depression. Thus, some blood biomarkers employed in our study (B-esterases, GST, levels of TBARS, ACA, and H/L ratio) might be used as predictors in health and ecological risk assessment of amphibian populations exposed to OP insecticides and herbicides.

Keywords

Amphibians Dermal exposure Chlorpyrifos 2,4-D Glyphosate Blood non-destructive parameters 

Notes

Acknowledgments

This study was supported in part by the National Council for Scientific and Technical Research (CONICET), National Agency for Promotion of Science and Technology (ANPCyT), and the Course of Action for Research and Science Promotion (CAI + D-UNL). Authors are thankful to Dr. Andrew Collins (University of Oslo, Oslo, Norway) for providing the enzyme FPG and ENDO III. We also thank the anonymous reviewer for many valuable comments and suggestions.

Compliance with Ethical Standards

Animals used in this research have been treated according to ASIH and SSAR (2001) criteria and with approval from the Animal Ethics Committee of the Faculty of Biochemistry and Biological Sciences. http://www.fbcb.unl.edu.ar/pages/investigacion/comite-de-etica.php

Conflict of Interest

The authors declare that they have no competing interests.

References

  1. Ali, D., Nagpure, N. S., Kumar, S., Kumar, R., Kushwaha, B., & Lakra, W. S. (2009). Assessment of genotoxic and mutagenic effects of chlorpyrifos in freshwater fish Channa punctatus (Bloch) using micronucleus assay and alkaline single-cell gel electrophoresis. Food and Chemical Toxicology, 47(3), 650–656. doi: 10.1016/j.fct.2008.12.021.CrossRefGoogle Scholar
  2. ASIH, HL, & SSAR (2001). Guidelines for use of live amphibians and reptiles in field research. http://www.utexas.edu/depts/asih/herpcoll.htlm. Accessed 13 June 2014.
  3. Attademo, A. M., Cabagna-Zenklusen, M., Lajmanovich, R. C., Peltzer, P. M., Junges, C. M., & Bassó, A. (2011). B-esterase activities and blood cell morphology in the frog Leptodactylus chaquensis (Amphibia: Leptodactylidae) on rice agroecosystems from Santa Fe Province (Argentina). Ecotoxicology, 20, 274–282. doi: 10.1007/s10646-010-0579-8.CrossRefGoogle Scholar
  4. Attademo, A. M., Peltzer, P. M., & Lajmanovich, R. C. (2005). Amphibians occurring in soybean and implications for biological control in Argentina. Agriculture, Ecosystems and Environment, 106(1), 389–394. doi: 10.1016/j.agee.2004.08.012 DOI: 10.1016/j.agee.2004.08.012#doilink
  5. Attademo, A. M., Peltzer, P. M., Lajmanovich, R. C., Cabagna, M., & Fiorenza, G. (2007). Plasma B-esterases and glutathione S-transferase activities in the toad Chaunus schneideri (Amphibia, Anura) inhabiting rice agroecosystems of Argentina. Ecotoxicology, 16, 533–539. doi: 10.1007/s10646-007-0154-0.CrossRefGoogle Scholar
  6. Ayres, M., Jr., Ayres, D., & Santos, A. (2008). BioEstat. Versão5.0. Belém, Pará, Brazil: Sociedade Civil Mamirauá, MCT-CNPq.Google Scholar
  7. Baynes, R. E., & Riviere, J. E. (1998). Influence of inert ingredients in pesticide formulations on dermal absorption of carbaryl. American Journal of Veterinary Research, 59(2), 168–175.Google Scholar
  8. Benamú, M. A., Schneider, M. I., & Sánchez, N. E. (2010). Effects of the herbicide glyphosate on biological attributes of Alpaida veniliae (Araneae, Araneidae), in laboratory. Chemosphere, 78(7), 871–876. doi: 10.1016/j.chemosphere.2009.11.027.CrossRefGoogle Scholar
  9. Braz-Mota, S., Sadauskas-Henrique, H., Duarte, R. M., Val, A. L., & Almeida-Val, V. M. (2015). Roundup® exposure promotes gills and liver impairments, DNA damage and inhibition of brain cholinergic activity in the Amazon teleost fish Colossoma macropomum. Chemosphere, 135, 53–60. doi: 10.1016/j. chemosphere .2015.03.042.CrossRefGoogle Scholar
  10. Brühl, C. A., Pieper, S., & Weber, B. (2011). Amphibians at risk? Susceptibility of terrestrial amphibian life stages to pesticides. Environmental Toxicology and Chemistry, 30(11), 2465–2472. doi: 10.1002/etc.650.CrossRefGoogle Scholar
  11. Brühl, C. A., Schmidt, T., Pieper, S., & Alscher, A. (2013). Terrestrial pesticide exposure of amphibians: an underestimated cause of global decline? Scientific Reports, 3, 1135. doi: 10.1038/srep01135.CrossRefGoogle Scholar
  12. Buege, J. A., & Aust, S. D. (1978). Microsomal lipid peroxidation. In S. Fleischer & L. Packer (Eds.), Methods in Enzymology (Vol. 52, pp. 302–310). New York: Academic Press.Google Scholar
  13. Bukowska, B. (2006). Toxicity of 2,4-dichlorophenoxyacetic acid—molecular mechanisms. Polish Journal of Environmental Studies, 15(3), 365–374.Google Scholar
  14. Bunyan, P. J., Jennings, D. M., & Taylor, A. (1968). Organophosphorus poisoning. Properties of avian esterases. Journal of Agricultural and Food Chemistry, 16(2), 326–331. doi: 10.1021/jf60156a028.CrossRefGoogle Scholar
  15. Busk, M., Jensen, F. B., & Wang, T. (2000). Effects of feeding on metabolism, gas transport, and acid–base balance in the bullfrog Rana catesbeiana. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 278(1), 85–95.Google Scholar
  16. Cabagna, M. C., Lajmanovich, R. C., Stringhini, G. A., Sanchez-Hernandez, J. C., & Peltzer, P. M. (2005). Hematological parameters of health status in common toad Bufo arenarum in agroecosystems of Santa Fe Province, Argentina. Applied Herpetology, 2(4), 373–380. doi: 10.1163/157075405774483085.CrossRefGoogle Scholar
  17. Chaturvedi, M., Sharma, C., & Tiwari, M. (2013). Effects of pesticides on human beings and farm animals: a case study. Research Journal of Chemical and Environmental Sciences, 1(3), 14–19.Google Scholar
  18. Collins, A. R., Dusinská, M., Gedik, C. M., & Stĕtina, R. (1996). Oxidative damage to DNA: do we have a reliable biomarker? Environmental Health Perspectives, 104, 465–469. doi: 10.1289/ehp.96104s3465.CrossRefGoogle Scholar
  19. Collins, A. R., Duthie, S. J., & Dobson, V. L. (1993). Direct enzymic detection of endogenous oxidative base damage in human lymphocyte DNA. Carcinogenesis, 14, 1733–1735. doi: 10.1093/carcin/14.9.1733.CrossRefGoogle Scholar
  20. Dacie, J. V., & Lewis, S. M. (1984). Practical hematology. New York: Churchill Livingstone.Google Scholar
  21. Davidson, C., Shaffer, H. B., & Jennings, M. R. (2001). Declines of the California red-legged frog: climate, UV-B, habitat, and pesticides hypotheses. Ecological Applications, 11(2), 464–479. doi: 10.1890/1051-0761(2001)011[0464:DOTCRL]2.0.CO;2.CrossRefGoogle Scholar
  22. Davis, A. K., Maney, D. L., & Maerz, J. C. (2008). The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Functional Ecology, 22(5), 760–772. doi: 10.1111/j.1365-2435.2008.01467.x.CrossRefGoogle Scholar
  23. de Lapuente, J., Lourenço, J., Mendo, S. A., Borràs, M., Martins, M. G., Costa, P. M., & Pacheco, M. (2015). The Comet Assay and its applications in the field of ecotoxicology: a mature tool that continues to expand its perspectives. Frontiers in Genetic, 6, 180. doi: 10.3389/fgene.2015.00180.CrossRefGoogle Scholar
  24. Dhawan, A., Bajpayee, M., & Parmar, D. (2009). Comet assay: a reliable tool for the assessment of DNA damage in different models. Cell Biology and Toxicology, 25, 5–32. doi: 10.1007/s10565-008-9072-z.CrossRefGoogle Scholar
  25. Ellman, G. L., Courtney, K. D., Andres, V., & Featherstone, R. M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95. doi: 10.1016/0006-2952(61)90145-9.CrossRefGoogle Scholar
  26. Extension Toxicology Network (EXTOXNET). (1996). Pesticide Information Profiles (PIP) - 2,4-D.Google Scholar
  27. Falfushinska, H. I., Romanchuk, L. D., & Stolyar, O. B. (2008). Different responses of biochemical markers in frogs (Rana ridibunda) from urban and rural wetlands to the effect of carbamate fungicide. Comparative Biochemistry and Physiology - C Toxicology and Pharmacology, 148(3), 223–229. doi: 10.1016/j.cbpc.2008.05.018.CrossRefGoogle Scholar
  28. Fellers, G. M., McConnell, L. L., Pratt, D., & Datta, S. (2004). Pesticides in mountain yellow-legged frogs (Rana muscosa) from the Sierra Nevada Mountains of California, USA. Environmental Toxicology and Chemistry/SETAC, 23(9), 2170–2177. doi: 10.1897/03-491.CrossRefGoogle Scholar
  29. Gabor, C. R., Bosch, J., Fries, J. N., & Davis, D. R. (2013). A non-invasive water-borne hormone assay for amphibians. Amphibia-Reptilia, 34(2), 151–162.Google Scholar
  30. Gebremariam, S. Y., Beutel, M. W., Yonge, D. R., Flury, M., & Harsh, J. B. (2012). Adsorption and desorption of chlorpyrifos to soils and sediments. Reviews of Environmental Contamination and Toxicology, 215, 123–175. doi: 10.1007/978-1-4614-1463-6_3.Google Scholar
  31. Gress, S., Lemoine, S., Séralini, G. E., & Puddu, P. E. (2015). Glyphosate-based herbicides potently affect cardiovascular system in mammals: review of the literature. Cardiovascular Toxicology, 15(2), 117–126. doi: 10.1007/s12012-014-9282-y.CrossRefGoogle Scholar
  32. Gomori, G. (1953). Human esterases. Journal of Laboratory and Clinical Medicine, 42, 445–453.Google Scholar
  33. Guilherme, S., Gaivão, I., Santos, M. A., & Pacheco, M. (2012). DNA damage in fish (Anguilla anguilla) exposed to a glyphosate-based herbicide-elucidation of organ-specificity and the role of oxidative stress. Mutation Research, 743(1–2), 1–9. doi: 10.1016/j.mrgentox.2011.10.017.CrossRefGoogle Scholar
  34. Gultekin, F., Patat, S., Akca, H., Akdogan, M., & Altuntas, I. (2006). Melatonin can suppress the cytotoxic effects of chlorpyrifos on human hepG2 cell lines. Human & Experimental Toxicology, 25(2), 47–55. doi: 10.1191/0960327106ht584oa.CrossRefGoogle Scholar
  35. Guyton, K. Z., Loomis, D., Grosse, Y., El Ghissassi, F., Benbrahim-Tallaa, L., Guha, N., Scoccianti, C., Mattock, H., & Straif, K. (2015). Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. The Lancet Oncology, 16, 490–491. doi: 10.1016/S1470-2045(15)70134-8.CrossRefGoogle Scholar
  36. Habdous, M., Vincent-Viry, M., Visvikis, S., & Siest, G. (2002). Rapid spectrophotometric method for serum glutathione S-transferases activity. Clinica Chimica Acta, 326(1–2), 131–142. doi: 10.1016/S0009-8981(02)00329-7.CrossRefGoogle Scholar
  37. Habig, W. H., Pabst, M. J., & Jakoby, W. B. (1974). Glutathione S transferases. The first enzymatic step in mercapturic acid formation. Journal of Biological Chemistry, 249(22), 7130–7139.Google Scholar
  38. Hayes, W. J., & Laws, E. R. (1991). Handbook of pesticide toxicology: classes of pesticides. New York: Academic Press Inc.Google Scholar
  39. Hook, S. E., Gallagher, E. P., & Batley, G. E. (2014). The role of biomarkers in the assessment of aquatic ecosystem health. Integrated Environmental Assessment and Management, 10(3), 327–341. doi: 10.1002/ieam.1530.CrossRefGoogle Scholar
  40. IUCN: The International Union for Conservation of Nature and Natural Resources. An analysis of amphibians on the 2010, IUCN Red List, 2010. www.iucnredlist.org/amphibians (Accessed 22 July 2014).
  41. Ismail, M., Khan, Q. M., Ali, R., Ali, T., & Mobeen, A. (2014). Evaluation of the genotoxicity of chlorpyrifos in common indus valley toad, Bufo stomaticus using alkaline single-cell gel electrophoresis (comet) assay. Agricultural Sciences, 5, 376–382. doi: 10.4236/as.2014.54039 DOI: 10.4236/as.2014.54039#_blank
  42. James, C. (2008). ISAAA Briefs brief 39 Global status of commercialized biotech/GM crops: 2008. Ithaca: ISAAA.Google Scholar
  43. Jergentz, S., Mugni, H., Bonetto, C., Schulz, R., & Mugnu, H. (2005). Assessment of insecticide contamination in runoff and stream water of small agricultural streams in the main soybean area of Argentina. Chemosphere, 61, 817–826. doi: 10.1016/j.chemosphere.2005.04.036.CrossRefGoogle Scholar
  44. Junges, C. M., Lajmanovich, R. C., Peltzer, P. M., Attademo, A. M., & Bassó, A. (2010). Predator–prey interactions between Synbranchus marmoratus (Teleostei: Synbranchidae) and Hypsiboas pulchellus tadpoles (Amphibia: Hylidae): Importance of lateral line in nocturnal predation and effects of fenitrothion exposure. Chemosphere, 81(10), 1233–1238. doi: 10.1016/j.chemosphere.2010.09.035.CrossRefGoogle Scholar
  45. Laguerre, C., Sánchez-Hernández, J. C., Kohler, H. R., Triebskorn, R., Capowiez, Y., Rault, M., & Mazzia, C. (2009). B-type esterases in the snail Xeropicta derbentina: an enzymological analysis to evaluate their use as biomarkers of pesticide exposure. Environmental Pollution, 157, 199–207. doi: 10.1016/j.envpol.2008.07.003.CrossRefGoogle Scholar
  46. Lajmanovich, R. C., Junges, C. M., Attademo, A. M., Peltzer, P. M., Cabagna-Zenklusen, M. C., & Basso, A. (2013). Individual and mixture toxicity of commercial formulations containing glyphosate, metsulfuron-methyl, bispyribac-sodium, and picloram on Rhinella arenarum tadpoles. Water, Air, & Soil Pollution, 224, 1404. doi: 10.1007/s11270-012-1404-1.CrossRefGoogle Scholar
  47. Lajmanovich, R. C., Sánchez-Hernández, J. C., Peltzer, P. M., Attademo, A. M., Fiorenza, G. S., Cabagna-Zenklusen, M. C., & Bassó, A. (2008). Levels of plasma B-esterases and glutathione-S-transferase activities in three South American toad species. Toxicological & Environmental Chemistry, 90(6), 1145–1161. doi: 10.1080/02772240801923107.CrossRefGoogle Scholar
  48. Li, D., Huang, Q., Lu, M., Zhang, L., Yang, Z., Zong, M., & Tao, L. (2015). The organophosphate insecticide chlorpyrifos confers its genotoxic effects by inducing DNA damage and cell apoptosis. Chemosphere, 135, 387–393. doi: 10.1016/j.chemosphere.2015.05.024.CrossRefGoogle Scholar
  49. Loewy, R. M., Monza, L. B., Kirs, V. E., & Savini, M. C. (2011). Pesticide distribution in an agricultural environment in Argentina. Journal of Environmental Science and Health. Part. B, 46(8), 662–670. doi: 10.1080/03601234.2012.592051.Google Scholar
  50. Marnett, L. J. (1999). Lipid peroxidation-DNA damage by malondialdehyde. Mutation Research, 424, 83–95. doi: 10.1016/S0027-5107(99)00010-X.CrossRefGoogle Scholar
  51. Merini, L. J., Cuadrado, V., & Giulietti, A. M. (2008). Spiking solvent, humidity and their impact on 2,4-D and 2,4-DCP extractability from high humic matter content soils. Chemosphere, 71(11), 2168–2172. doi: 10.1016/j.chemosphere.2007.12.025.CrossRefGoogle Scholar
  52. Mesnage, R., Bernay, B., & Séralini, G. E. (2013). Ethoxylated adjuvants of glyphosate-based herbicides are active principles of human cell toxicity. Toxicology, 313, 122–128. doi: 10.1016/j.tox.2012.09.006.CrossRefGoogle Scholar
  53. Müller, C., Jenni-Eiermann, S., & Jenni, L. (2011). Heterophils/Lymphocytes-ratio and circulating corticosterone do not indicate the same stress imposed on Eurasian kestrel nestlings. Functional Ecology, 25(3), 566–576. doi: 10.1111/j.1365-2435.2010.01816.x.CrossRefGoogle Scholar
  54. Muller, M., Hess, L., Tardivo, A., Lajmanovich, R., Attademo, A., Poletta, G., Simoniello, M., Yodice, A., Lavarello, S., Chialvo, D., & Scremin, O. (2014). Neurologic dysfunction and genotoxicity induced by low levels of chlorpyrifos. Neurotoxicology, 45, 22–30. doi: 10.1016/j.neuro.2014.08.01.CrossRefGoogle Scholar
  55. Norris, K., & Evans, M. R. (2000). Ecological immunology: life history trade-offs and immune defense in birds. Behavioral Ecology, 11(1), 19–26. doi: 10.1093/beheco/11.1.19.CrossRefGoogle Scholar
  56. Oruç, E. O., & Uner, N. (2002). Marker enzyme assessment in the liver of Cyprinus carpio (L.) exposed to 2,4-D and azinphosmethyl. Journal of Biochemical and Molecular Toxicology, 16(4), 182–188. doi: 10.1002/jbt.10040.CrossRefGoogle Scholar
  57. Oruç, E. O., Sevgiler, Y., & Uner, N. (2004). Tissue-specific oxidative stress responses in fish exposed to 2,4-D and azinphosmethyl. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 137(1), 43–51. doi: 10.1016/j.cca.2003.11.006.CrossRefGoogle Scholar
  58. Peltzer, P. M., Lajmanovich, R. C., Attademo, A. M., & Beltzer, A. H. (2006). Diversity of anurans across agricultural ponds in Argentina. Biodiversity and Conservation, 15, 3499–3513. doi: 10.1007/s10531-004-2940-9.CrossRefGoogle Scholar
  59. Poletta, G. L., Larriera, A., Kleinsorge, E., & Mudry, M. D. (2008). Caiman latirostris (broad-snouted caiman) as a sentinel organism for genotoxic monitoring: basal values determination of micronucleus and comet assay. Mutation Research, 650, 202–209. doi: 10.1016/j.mrgentox.2007.12.001.CrossRefGoogle Scholar
  60. Poletta, G. L., Larriera, A., Kleinsorge, E., & Mudry, M. D. (2009). Genotoxicity of the herbicide formulation Roundup®(glyphosate) in broad-snouted caiman (Caiman latirostris) evidenced by the Comet assay and the Micronucleus test. Mutation Research, 672, 95–102. doi: 10.1016/j.mrgentox.2008.10.007.CrossRefGoogle Scholar
  61. Poletta, G., Simoniello, M. F., Porcel de Peralta, M., Kleinsorge, E., Siroski, P., & Mudry, M. (2012). Evaluation of pesticide-induced DNA damage and oxidative stress on human and wildlife populations in Santa Fe province (Argentina). In A. J. A. Gomez & E. M. L. de Ortega (Eds.), Pesticides: Characteristics, Uses and Health Implications (pp. 1–23). Nova Science Publishers.Google Scholar
  62. Qiao, D., Seidler, F. J., & Slotkin, T. A. (2005). Oxidative mechanisms contributing to the developmental neurotoxicity of nicotine and chlorpyrifos. Toxicology and Applied Pharmacology, 206, 7–26. doi: 10.1016/j.taap.2004.11.003.CrossRefGoogle Scholar
  63. Quaranta, A., Bellantuono, V., Cassano, G., & Lippe, C. (2009). Why amphibians are more sensitive than mammals to xenobiotics. PLoS ONE, 4(11), e7699.CrossRefGoogle Scholar
  64. Robles-Mendoza, C., Zúñiga-Lagunes, S. R., Ponce de León-Hill, C. A., Hernández-Soto, J., & Vanegas-Pérez, C. (2011). Esterases activity in the axolotl Ambystoma mexicanum exposed to chlorpyrifos and its implication to motor activity. Aquatic Toxicology, 105(3–4), 728–734. doi: 10.1371/journal.pone.0007699.CrossRefGoogle Scholar
  65. Ryan, T., Scott, C., & Douthitt, B. (2006). Sub-lethal effects of 2,4-D exposure on golf course amphibians. USGA Turfgrass and Environmental Research Online, 5(16), 1–14.Google Scholar
  66. Safahieh, I., Jaddi, Y., Yavari, V., & Reza Saligheh, Z. (2012). Sub-lethal effects of herbicide Paraquat on hematological parameters of benny fish Mesopotamichthys sharpeyi—international proceedings of conference full-text database. In Proceedings of 2012 2nd International Conference on Biotechnology and Environment Management (pp. 141–145). Phuket, Thailand: IACSIT Press, Singapore.Google Scholar
  67. Sanchez, J. C., Fossi, M. C., & Focardi, S. (1997). Serum B esterases as an nondestructive biomarker for monitoring the exposure of reptiles to organophosphorus insecticides. Ecotoxicology and Environmental Safety, 38, 45–52. doi: 10.1006/eesa.1997.1560.CrossRefGoogle Scholar
  68. Sanchez-Hernandez, J. C., & Moreno-Sanchez, B. M. (2002). Lizard cholinesterases as biomarkers of pesticide exposure: enzymological characterization. Environmental Toxicology and Chemistry / SETAC, 21(11), 2319–2325.CrossRefGoogle Scholar
  69. Sherman, J. D. (1996). Chlorpyrifos (Dursban)-associated birth defects: report of four cases. Archives of Environmental Health, 51(1), 5–8. doi: 10.1002/etc.5620211109.CrossRefGoogle Scholar
  70. Shutler, D., & Marcogliese, D. J. (2011). Leukocyte profiles of northern leopard frogs, Lithobates pipiens, exposed to pesticides and hematozoa in agricultural wetlands. Copeia, 2011(2), 301–307. doi: 10.1643/CP-10-065.CrossRefGoogle Scholar
  71. Simoniello, M. F., Kleinsorge, E. C., Scagnetti, J. A., Mastandrea, C., Grigolato, R. A., Paonessa, A. M., & Carballo, M. A. (2010). Biomarkers of cellular reaction to pesticide exposure in a rural population. Biomarkers, 15, 52–60. doi: 10.3109/13547500903276378.CrossRefGoogle Scholar
  72. Singh, N. P., McCoy, M. T., Tice, R. R., & Schneider, E. L. (1988). A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research, 175, 184–191. doi: 10.1016/0014-4827(88)90265-0.CrossRefGoogle Scholar
  73. Sparling, D., Fellers, G., & McConnell, L. (2001). Pesticides and amphibian population declines in California, USA. Environmental Toxicology and Chemistry, 20, 1591–1595. doi: 10.1002/etc.5620200725.CrossRefGoogle Scholar
  74. Sparling, D. W., Linder, G., Bishop, C. A., & Krest, S. (2010). Ecotoxicology of amphibians and reptiles, (Sparling, D. W., Linder, G., Bishop, C. A. & Krest, S. Eds.) (Second Edi.). CRC Press.Google Scholar
  75. Storrs Méndez, S. I., Tillitt, D. E., Rittenhouse, T. A. G., & Semlitsch, R. D. (2009). Behavioral response and kinetics of terrestrial atrazine exposure in American toads (Bufo americanus). Archives of Environmental Contamination and Toxicology, 57(3), 590–597. doi: 10.1007/s00244-009-9292-0.CrossRefGoogle Scholar
  76. Sun, F., & Chen, H. S. (2008). Monitoring of pesticide chlorpyrifos residue in farmed fish: investigation of possible sources. Chemosphere, 71(10), 1866–1869. doi: 10.1016/j.chemosphere.2008.01.034.CrossRefGoogle Scholar
  77. Tyler, M. J. (1999). Frogs and toads as experimental animals. Australian and New Zealand Council for the Care of Animals in Research and Teaching Ltd (ANZCCART) News, 12, 1–4.Google Scholar
  78. Valavanidis, A., Vlahogianni, T., Dassenakis, M., & Scoullos, M. (2006). Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotoxicology and Environmental Safety, 64(2), 178–189. doi: 10.1016/j.ecoenv.2005.03.013.CrossRefGoogle Scholar
  79. Van Meter, R. J., Glinski, D. A., Hong, T., Cyterski, M., Henderson, W. M., & Purucker, S. T. (2014). Estimating terrestrial amphibian pesticide body burden through dermal exposure. Environmental Pollution, 193, 262–268. doi: 10.1016/j.envpol.2014.07.003.CrossRefGoogle Scholar
  80. Vernadakis, A., & Rutledge, C. O. (1973). Effects of ether and pentobarbital anaesthesia on the activities of brain acetylcholinesterase and butyrylcholinesterase in young adult rats. Journal of Neurochemistry, 20(5), 1503–1504.CrossRefGoogle Scholar
  81. Wagner, N., Reichenbecher, W., Teichmann, H., Tappeser, B., & Lötters, S. (2013). Questions concerning the potential impact of glyphosate based herbicides on amphibians. Environmental Toxicology and Chemistry, 32(8), 1688–1700. doi: 10.1002/etc.2268.CrossRefGoogle Scholar
  82. Walker, C. H. (1998). The use of biomarkers to measure the interactive effects of chemicals. Ecotoxicology and Environmental Safety, 40, 65–70. doi: 10.1006/eesa.1998.1643.CrossRefGoogle Scholar
  83. Wheelock, C. E., Miller, J. L., Miller, M. G., Shan, G., Gee, S. J., & Hammock, B. D. (2004). Development of toxicity identification evaluation (TIE) procedures for pyrethroid detection using esterase activity. Environmental Toxicology and Chemistry, 11, 2699–2708. doi: 10.1897/03-544.CrossRefGoogle Scholar
  84. Wheelock, C. E., Phillips, B. M., Anderson, B. S., Miller, J. L., Miller, M. J., & Hammock, B. D. (2008). Applications of carboxylesterase activity in environmental monitoring and toxicity identification evaluations (TIEs). Reviews of Environmental Contamination and Toxicology, 195, 117–178. doi: 10.1007/978-0-387-77030-7_5.Google Scholar
  85. Williams, G. M., Kroes, R., & Munro, I. C. (2000). Safety evaluation and risk assessment of the herbicide Roundup and its active ingredient, glyphosate, for humans. Regulatory Toxicology and Pharmacology, 31(2), 117–165. doi: 10.1006/rtph.1999.1371.CrossRefGoogle Scholar
  86. Willens, S., Stoskopf, M. K., Baynes, R. E., Lewbart, G. A., Taylor, S. K., & Kennedy-Stoskopf, S. (2006). Percutaneous malathion absorption in the harvested perfused anuran pelvic limb. Environmental Toxicology and Pharmacology, 22(3), 263–267. doi: 10.1016/j.etap.2006.04.009.CrossRefGoogle Scholar
  87. Yin, X., Zhu, G., Li, X. B., & Liu, S. (2009). Genotoxicity evaluation of chlorpyrifos to amphibian Chinese toad (Amphibian: Anura) by Comet assay and Micronucleus test. Mutation Research, 680(1–2), 2–6. doi: 10.1016/j.mrgentox.2009.05.018.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Rafael C. Lajmanovich
    • 1
    • 2
  • Andrés M. Attademo
    • 1
    • 2
  • María F. Simoniello
    • 2
  • Gisela L. Poletta
    • 1
    • 2
  • Celina M. Junges
    • 1
  • Paola M. Peltzer
    • 1
  • Paula Grenón
    • 2
  • Mariana C. Cabagna-Zenklusen
    • 2
  1. 1.National Council for Scientific and Technical Research (CONICET)Buenos AiresArgentina
  2. 2.Faculty of Biochemistry and Biological SciencesNational University of Littoral (FBCB-UNL)Santa FeArgentina

Personalised recommendations