Advertisement

Water, Air, & Soil Pollution

, 226:397 | Cite as

Comparison of Stir Bar Sorptive Extraction (SBSE) and Solid Phase Microextraction (SPME) for the Analysis of Polycyclic Aromatic Hydrocarbons (PAH) in Complex Aqueous Soil Leachates

  • Oliver KrügerEmail author
  • Sina Olberg
  • Rainer Senz
  • Franz-Georg Simon
Article

Abstract

Stir bar sorptive extraction (SBSE) and solid phase microextraction (SPME) are well-established sample preparation methods for the analysis of polycyclic aromatic hydrocarbons in aqueous samples. However, complex matrices especially characterized by slurry particles and dissolved organic matter (DOM) can hamper the extraction of PAH with both SBSE and SPME and lead to different results. Thus, we produced aqueous eluates from PAH-contaminated soils differing in particle size distribution and organic matter content and determined the PAH concentration in the eluates with both SBSE and SPME. Furthermore, we tested the influence of filtration on the PAH analysis. The excess finding of PAH with SBSE compared to SPME ranged from −16.6 to 24.5 %. The differences increased after filtration. We found a strong positive correlation of the excess finding to the total organic carbon content (TOC) and a negative one to the pH value. The results indicate that SBSE is less affected by complex matrices than SPME.

Keywords

Leaching tests Complex environmental samples Stir bar sorptive extraction Solid phase microextraction Polycyclic aromatic hydrocarbons 

References

  1. Arias-Estévez, M., Fernández-Gándara, D., García-Falcón, M. S., García-Río, L., Mejuto, J. C., & Simal-Gándara, J. (2007). Sorption of PAHs to colloid dispersions of humic substances in water. Bulletin of Environmental Contamination and Toxicology, 79, 251–254.CrossRefGoogle Scholar
  2. Baltussen, E., Sandra, P., David, F., & Cramers, C. (1999). Stir bar sorptive extraction(SBSE), a novel extraction technique for aqueous samples: theory and principles. Journal of Microcolumn Separations, 11, 737–747.CrossRefGoogle Scholar
  3. Banitaba, M. H., Hosseiny Davarani, S. S., & Kazemi Movahed, S. (2014). Comparison of direct, headspace and headspace cold fiber modes in solid phase microextraction of polycyclic aromatic hydrocarbons by a new coating based on poly(3,4-ethylenedioxythiophene)/graphene oxide composite. Journal of Chromatography A, 1325, 23–30.CrossRefGoogle Scholar
  4. Camino-Sánchez, F. J., Rodríguez-Gómez, R., Zafra-Gómez, A., Santos-Fandila, A., & Vílchez, J. L. (2014). Stir bar sorptive extraction: recent applications, limitations and future trends. Talanta, 130, 388–399.CrossRefGoogle Scholar
  5. David, F., & Sandra, P. (2007). Stir bar sorptive extraction for trace analysis. Journal of Chromatography A, 1152, 54–69.CrossRefGoogle Scholar
  6. de Perre, C., Le Ménach, K., Ibalot, F., Parlanti, E., & Budzinski, H. (2014). Development of solid-phase microextraction to study dissolved organic matter—polycyclic aromatic hydrocarbon interactions in aquatic environment. Analytica Chimica Acta, 807, 51–60.CrossRefGoogle Scholar
  7. DIN 19527 (2012–08). Elution von Feststoffen - Schüttelverfahren zur Untersuchung des Elutionsverhaltens von organischen Stoffen mit einem Wasser/Feststoff-Verhältnis von 2 l/kg. Leaching of solid materials—batch test at a liquid to solid ratio of 2 l/kg for the examination of the leaching behaviour of organic substances. Deutsches Institut für Normung: German Standardization Organization.Google Scholar
  8. DIN EN ISO 17993 (2004–03). Wasserbeschaffenheit - Bestimmung von 15 polycyclischen aromatischen Kohlenwasserstoffen (PAK) in Wasser durch HPLC mit Fluoreszenzdetektion nach Flüssig-Flüssig-Extraktion. Water quality—determination of 15 polycyclic aromatic hydrocarbons (PAH) in water by HPLC with fluorescence detection after liquid-liquid extraction (ISO 17993:2002). Deutsches Institut für Normung: German Standardisation Organisation.Google Scholar
  9. Duan, C., Shen, Z., Wu, D., & Guan, Y. (2011). Recent developments in solid-phase microextraction for on-site sampling and sample preparation. TrAC Trends in Analytical Chemistry, 30(10), 1568–1574.CrossRefGoogle Scholar
  10. EPA (1986). EPA Method 8310: polynuclear aromatic hydrocarbons.Google Scholar
  11. Es-haghi, A., Hosseininasab, V., & Bagheri, H. (2014). Preparation, characterization, and applications of a novel solid-phase microextraction fiber by sol-gel technology on the surface of stainless steel wire for determination of poly cyclic aromatic hydrocarbons in aquatic environmental samples. Analytica Chimica Acta, 813, 48–55.CrossRefGoogle Scholar
  12. Fidalgo-Used, N., Blanco-González, E., & Sanz-Medel, A. (2007). Sample handling strategies for the determination of persistent trace organic contaminants from biota samples. Analytica Chimica Acta, 590, 1–16.CrossRefGoogle Scholar
  13. García-Falcón, M. S., Cancho-Grande, B., & Simal-Gándara, J. (2004a). Stirring bar sorptive extraction in the determination of PAHs in drinking waters. Water Research, 38, 1679–1684.CrossRefGoogle Scholar
  14. García-Falcón, M. S., Pérez-Lamela, C., & Simal-Gándara, J. (2004b). Strategies for the extraction of free and bound polycyclic aromatic hydrocarbons in run-off waters rich in organic matter. Analytica Chimica Acta, 508, 177–183.CrossRefGoogle Scholar
  15. Grathwohl, P., & Susset, B. (2009). Comparison of percolation to batch and sequential leaching tests: theory and data. Waste Management, 29, 2681–2688.CrossRefGoogle Scholar
  16. Grathwohl, P., & van der Sloot, H. A. (2007). Groundwater risk assessment at contaminated sites (GRACOS): test methods and modeling approaches. In: Quevauviller, P. (Ed.), Groundwater Science and Policy. RSC Publishing, Cambridge. Quevauviller, P. (Ed.), Groundwater Science and Policy.Google Scholar
  17. ISO/TS 21268–1 (2007–07). Soil quality - Leaching procedures for subsequent chemical and ecotoxicological testing of soil and soil materials - Part 1: Batch test using a liquid to solid ratio of 2 l/kg dry matter. Soil quality—leaching procedures for subsequent chemical and ecotoxicological testing of soil and soil materials—part 1: batch test using a liquid to solid ratio of 2 l/kg dry matter. International Standardization Organization.Google Scholar
  18. Jacob, J. (1996). The significance of polycyclic aromatic hydrocarbons as environmental carcinogens. Pure and Applied Chemistry, 68, 301–308.CrossRefGoogle Scholar
  19. Kalbe, U., Berger, W., Simon, F. G., Eckardt, H., & Christoph, G. (2007). Results of interlaboratory comparisons of column percolation tests. Journal of Hazardous Materials, 148(3), 714–720.CrossRefGoogle Scholar
  20. Krüger, O., Christoph, G., Kalbe, U., & Berger, W. (2011). Comparison of stir bar sorptive extraction (SBSE) and liquid-liquid extraction (LLE) for the analysis of polycyclic aromatic hydrocarbons (PAH) in complex aqueous matrices. Talanta, 85, 1428–1434.CrossRefGoogle Scholar
  21. Krüger, O., Kalbe, U., Meißner, K., & Sobottka, S. (2014). Sorption effects interfering with the analysis of polycyclic aromatic hydrocarbons (PAH) in aqueous samples. Talanta, 122, 151–156.CrossRefGoogle Scholar
  22. Laak, T. L. T., Agbo, S. O., Barendregt, A., & Hermens, J. L. M. (2006). Freely dissolved concentrations of PAHs in soil pore water: measurements via solid-phase extraction and consequences for soil tests. Environmental Science and Technology, 40, 1307–1313.CrossRefGoogle Scholar
  23. Lima, A. L. C., Farrington, J. W., & Reddy, C. M. (2005). Combustion-derived polycyclic aromatic hydrocarbons in the environment—a review. Environmental Forensics, 6(2), 109–131.CrossRefGoogle Scholar
  24. Padrón, M., Afonso-Olivares, C., Sosa-Ferrera, Z., & Santana-Rodríguez, J. (2014). Microextraction techniques coupled to liquid chromatography with mass spectrometry for the determination of organic micropollutants in environmental water samples. Molecules, 19(7), 10320.CrossRefGoogle Scholar
  25. Popp, P., Bauer, C., & Wennrich, L. (2001). Application of stir bar sorptive extraction in combination with column liquid chromatography for the determination of polycyclic aromatic hydrocarbons in water samples. Analytica Chimica Acta, 436, 1–9.CrossRefGoogle Scholar
  26. Popp, P., Bauer, C., Hauser, B., Keil, P., & Wennrich, L. (2003). Extraction of polycyclic aromatic hydrocarbons and organochlorine compounds from water: a comparison between solid-phase microextraction and stir bar sorptive extraction. Journal of Separation Science, 26(9–10), 961–967.CrossRefGoogle Scholar
  27. Ravindra, K., Sokhi, R., & Van Grieken, R. (2008). Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmospheric Environment, 42(13), 2895–2921.CrossRefGoogle Scholar
  28. Seethapathy, S., & Górecki, T. (2012). Applications of polydimethylsiloxane in analytical chemistry: a review. Analytica Chimica Acta, 750, 48–62.CrossRefGoogle Scholar
  29. Spietelun, A., Marcinkowski, Ł., de la Guardia, M., & Namieśnik, J. (2013). Recent developments and future trends in solid phase microextraction techniques towards green analytical chemistry. Journal of Chromatography A, 1321, 1–13.CrossRefGoogle Scholar
  30. Srogi, K. (2007). Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environmental Chemistry Letters, 5(4), 169–195.CrossRefGoogle Scholar
  31. Tang, B., & Isacsson, U. (2008). Analysis of mono- and polycyclic aromatic hydrocarbons using solid-phase microextraction: state-of-the-art. Energy and Fuels, 22, 1425–1438.CrossRefGoogle Scholar
  32. van Schellin, P., Paschke, A., & Popp, P. (2010). Silicone rod and silicone tube sorptive extraction. Journal of Chromatography A, 1217, 2589–2598.CrossRefGoogle Scholar
  33. Witt, G., Liehr, G. A., Borck, D., & Mayer, P. (2009). Matrix solid-phase microextraction for measuring freely dissolved concentrations and chemical activities of PAHs in sediment cores from the western Baltic Sea. Chemosphere, 74, 522–529.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Oliver Krüger
    • 1
    Email author
  • Sina Olberg
    • 2
  • Rainer Senz
    • 2
  • Franz-Georg Simon
    • 1
  1. 1.Bundesanstalt für Materialforschung und –prüfung (BAM)BerlinGermany
  2. 2.University of Applied Sciences BerlinBerlinGermany

Personalised recommendations