Water, Air, & Soil Pollution

, 226:337 | Cite as

Dietary Reliance on Benthic Primary Production as a Predictor of Mercury Accumulation in Freshwater Fish and Turtles

  • Julie L. ChâteauvertEmail author
  • Gregory Bulté
  • Alexandre J. Poulain
  • Linda M. Campbell
  • Gabriel Blouin-Demers


The feeding ecology of a species can affect the transfer and accumulation of contaminants such as mercury (Hg). Modeling the accumulation of Hg through food webs can help identify which animals are likely to be burdened by elevated Hg concentrations. In lakes, most of the Hg is sequestered in the sediments. Therefore, species ultimately relying on benthic primary production may experience a greater trophic transfer of Hg relative to species that rely on pelagic primary production. This hypothesis was tested in a simple food web using muscle tissue collected from three species of fish (Lepomis gibbosus, Notropis heterodon, and Labidesthes sicculus) and blood from two species of turtles (Sternotherus odoratus and Chrysemys picta) that differ in reliance on benthic primary production. Averaged multiple linear regression models were used to predict Hg concentrations in the five consumers with respect to reliance on benthic primary production, while controlling for other factors known to influence Hg accumulation (sex, size, lake, species identity, and trophic level). A positive and significant relationship was found between Hg burden and dietary reliance on benthic primary production, animal length, trophic level, and species identity in fish. In turtles, the relationship between Hg burden and dietary reliance on benthic primary production was not significant, but trophic level, animal length, and species identity significantly influenced Hg burden. Overall, reliance on benthic primary production was an important predictor of Hg burden for fish, but not for turtles. Future attempts to model Hg accumulation in similar study systems and/or fish species should include dietary reliance on benthic primary production as a predictor variable.


Stable isotopes Mixing model Food web Ontario Biomagnification 



We are thankful to G. Slevan-Tremblay, M. Salaun-Miller, M. Brown, and C. Stewart for their help in the field and in the laboratory. We appreciated logistical support from the staff of the Queen’s University Biological Station. We sincerely appreciate the work that was performed in the G.G. Hatch Stable Isotope Laboratory and the Poulain Laboratory at the University of Ottawa for all sample analyses. We are also very thankful for the helpful comments provided by F. Pick and J. Blais on the MSc thesis from which this manuscript arose. Finally, this study was made possible with the financial and logistical support of Parks Canada and of the University of Ottawa.


  1. Anderson, O. R. J., Phillips, R. A., McDonald, R. A., Shore, R. F., McGill, R. A. R., & Bearhop, S. (2009). Influence of trophic position and foraging range on mercury levels within a seabird community. Marine Ecology: Progress Series, 375, 277–288.CrossRefGoogle Scholar
  2. Atwell, L., Hobson, K. A., & Welch, H. E. (1998). Biomagnification and bioaccumulation of mercury in an arctic marine food web: insights from stable nitrogen isotope analysis. Canadian Journal of Fisheries and Aquatic Sciences, 55(5), 1114–1121. doi: 10.1139/cjfas-55-5-1114.CrossRefGoogle Scholar
  3. Aubail, A., Teilmann, J., Dietz, R., Rigét, F., Harkonen, T., Karlsson, O., et al. (2011). Investigation of mercury concentrations in fur of phocid seals using stable isotopes as tracers of trophic levels and geographical regions. Polar Biology, 34(9), 1411–1420.CrossRefGoogle Scholar
  4. Avens, L., & Snover, M. L. (2013). Age and age estimation in sea turtles. In J. Wyneken et al. (Eds.), The biology of sea turtles, volume 3 (CRC Marine Biology Series, pp. 97–133).CrossRefGoogle Scholar
  5. Barton, K. (2015). Multi-model inference. R Package version 1.15.1.Google Scholar
  6. Bergeron, C. M., Husak, J. F., Unrine, J. M., Romanek, C. S., & Hopkins, W. A. (2007). Influence of feeding ecology on blood mercury concentrations in four species of turtles. Environmental Toxicology and Chemistry, 26(8), 1733–1741.CrossRefGoogle Scholar
  7. Boudou, A., & Ribeyre, F. (1997). Aquatic ecotoxicology: from the ecosystem to the cellular and molecular levels. Environmental Health Perspectives, 105(Suppl 1), 21.CrossRefGoogle Scholar
  8. Buckley, D. E. (1986). Bioenergetics of age-related versus size-related reproductive tactics in female Viviparus georgianus. Biological Journal of the Linnean Society, 27(4), 293–309.CrossRefGoogle Scholar
  9. Bulté, G., & Blouin-Demers, G. (2008). Northern map turtles (Graptemys geographica) derive energy from the pelagic pathway through predation on zebra mussels (Dreissena polymorpha). Freshwater Biology, 53(3), 497–508.CrossRefGoogle Scholar
  10. Burnham, K., & Anderson, D. (2002). Model Selection and Multi-Model Inference: A Practical Information-Theoretic Approach (2nd ed.). New York: Springer Verlag.Google Scholar
  11. Caut, S., Angulo, E., & Courchamp, F. (2009). Variation in discrimination factors (Δ15N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction. Journal of Applied Ecology, 46(2), 443–453.CrossRefGoogle Scholar
  12. Day, R. D., Christopher, S. J., Becker, P. R., & Whitaker, D. W. (2005). Monitoring mercury in the loggerhead sea turtle, Caretta caretta. Environmental Science and Technology, 39(2), 437–446.CrossRefGoogle Scholar
  13. Depew, D. C., Burgess, N. M., Anderson, M. R., Baker, R., Bhavsar, S. P., Bodaly, R., et al. (2013). An overview of mercury concentrations in freshwater fish species: a national fish mercury dataset for Canada. Canadian Journal of Fisheries and Aquatic Sciences, 70(3), 436–451.CrossRefGoogle Scholar
  14. Dessauer, H. C. (1970). Blood chemistry of reptiles: physiological and evolutionary aspects. Biology of Reptilia, 3(1), 1–72.Google Scholar
  15. Dyer, S. M., & Cervasio, E. L. (2008). An overview of restraint and blood collection techniques in exotic pet practice. The Veterinary Clinics of North America. Exotic Animal Practice, 11(3), 423–443.CrossRefGoogle Scholar
  16. Eagles-Smith, C. A., Suchanek, T. H., Colwell, A. E., & Anderson, N. L. (2008). Mercury trophic transfer in a eutrophic lake: the importance of habitat-specific foraging. Ecological Applications, 18(sp8), A196–A212.CrossRefGoogle Scholar
  17. Eisler, R. (1987). Mercury hazards to fish, wildlife, and invertebrates: a synoptic review (U.S. Fish and Wildlife Service Biological Report, 85(1.10)). Laurel, MD: U.S. Department of the Interior, Fish and Wildlife Service.Google Scholar
  18. Ernst, C., & Barbour, R. (1972). Turtles of the United States. Lexington, KT: The University Press of Kentucky.Google Scholar
  19. France, R. (1995). Carbon-13 enrichment in benthic compared to planktonic algae: foodweb implications. Marine Ecology: Progress Series, 124(1), 307–312.CrossRefGoogle Scholar
  20. Furutani, A., & Rudd, J. W. (1980). Measurement of mercury methylation in lake water and sediment samples. Applied and Environmental Microbiology, 40(4), 770–776.Google Scholar
  21. Golet, W. J., & Haines, T. A. (2001). Snapping turtles (Chelydra serpentina) as monitors for mercury contamination of aquatic environments. Environmental Monitoring and Assessment, 71(3), 211–220.CrossRefGoogle Scholar
  22. Grieb, T. M., Bowie, G. L., Driscoll, C. T., Gloss, S. P., Schofield, C. L., & Porcella, D. B. (1990). Factors affecting mercury accumulation in fish in the upper Michigan peninsula. Environmental Toxicology and Chemistry, 9(7), 919–930.CrossRefGoogle Scholar
  23. Hecky, R., & Hesslein, R. (1995). Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. Journal of the North American Benthological Society, 631–653.Google Scholar
  24. Hogan, L. S., Marschall, E., Folt, C., & Stein, R. A. (2007). How non-native species in Lake Erie influence trophic transfer of mercury and lead to top predators. Journal of Great Lakes Research, 33(1), 46–61.CrossRefGoogle Scholar
  25. Hopkins, B. C., Willson, J. D., & Hopkins, W. A. (2013). Mercury exposure is associated with negative effects on turtle reproduction. Environmental Science and Technology, 47(5), 2416–2422.CrossRefGoogle Scholar
  26. Hopkins, J. B., III, & Ferguson, J. M. (2012). Estimating the diets of animals using stable isotopes and a comprehensive Bayesian mixing model. PLoS ONE, 7(1), e28478.CrossRefGoogle Scholar
  27. Horgan, M. J., & Mills, E. L. (1997). Clearance rates and filtering activity of zebra mussel (Dreissena polymorpha): implications for freshwater lakes. Canadian Journal of Fisheries and Aquatic Sciences, 54(2), 249–255.CrossRefGoogle Scholar
  28. Kelly, C. A., Rudd, J. W., St Vincent, L. L., & Heyes, A. (1995). Is total mercury concentration a good predictor of methyl mercury concentration in aquatic systems? Water, Air, and Soil Pollution, 80, 715–724.CrossRefGoogle Scholar
  29. Kidd, K. A., Muir, D. C. G., Evans, M. S., Wang, X., Whittle, M., Swanson, H. K., et al. (2012). Biomagnification of mercury through lake trout (Salvelinus namaycush) food webs of lakes with different physical, chemical and biological characteristics. Science of the Total Environment, 438, 135–143.CrossRefGoogle Scholar
  30. Kinsella, J., Shimp, J., Mai, J., & Weihrauch, J. (1977). Sterol, phospholipid, mineral content and proximate composition of filets of select freshwater fish species. Journal of Food Biochemistry, 1(2), 131–140.CrossRefGoogle Scholar
  31. Lavoie, R. A., Hebert, C. E., Rail, J.-F., Braune, B. M., Yumvihoze, E., Hill, L. G., et al. (2010). Trophic structure and mercury distribution in a Gulf of St. Lawrence (Canada) food web using stable isotope analysis. Science of the Total Environment, 408(22), 5529–5539.CrossRefGoogle Scholar
  32. Lavoie, R. A., Jardine, T. D., Chumchal, M. M., Kidd, K. A., & Campbell, L. M. (2013). Biomagnification of mercury in aquatic food webs: A worldwide meta-analysis. Environmental Science and Technology, 47(23), 13385–13394.CrossRefGoogle Scholar
  33. MacAvoy, S. E., Arneson, L. S., & Bassett, E. (2006). Correlation of metabolism with tissue carbon and nitrogen turnover rate in small mammals. Oecologia, 150(2), 190–201.CrossRefGoogle Scholar
  34. Meyer, E., Eagles-Smith, C. A., Sparling, D., & Blumenshine, S. (2014). Mercury exposure associated with altered plasma thyroid hormones in the declining Western Pond Turtle (Emys marmorata) from California mountain streams. Environmental Science and Technology, 48, 2989–96.CrossRefGoogle Scholar
  35. Moll, E. O. (1973). Latitudinal and intersubspecific variation in reproduction of the painted turtle, Chrysemys picta. Herpetologica, 29, 307–318.Google Scholar
  36. Mommsen, T. P. (2001). Paradigms of growth in fish. Comparative Biochemistry and Physiology, Part B: Biochemistry & Molecular Biology, 129(2), 207–219.CrossRefGoogle Scholar
  37. Parnell, A., & Jackson, A. (2008). SIAR: stable isotope analysis in R. R package version 3.Google Scholar
  38. Peterson, B. J., & Fry, B. (1987). Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics, 293–320.Google Scholar
  39. Phillips, D. L., & Koch, P. L. (2002). Incorporating concentration dependence in stable isotope mixing models. Oecologia, 130(1), 114–125.CrossRefGoogle Scholar
  40. Pinnegar, J., & Polunin, N. (1999). Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions. Functional Ecology, 13(2), 225–231.CrossRefGoogle Scholar
  41. Post, D. M. (2002). Using stable isotopes to estimate trophic position: Models, methods, and assumptions. Ecology, 83(3), 703–718.CrossRefGoogle Scholar
  42. Post, D. M., Layman, C. A., Arrington, D. A., Takimoto, G., Quattrochi, J., & Montana, C. G. (2007). Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia, 152(1), 179–189.CrossRefGoogle Scholar
  43. Power, M., Klein, G., Guiguer, K., & Kwan, M. (2002). Mercury accumulation in the fish community of a sub‐Arctic lake in relation to trophic position and carbon sources. Journal of Applied Ecology, 39(5), 819–830.CrossRefGoogle Scholar
  44. Riva-Murray, K., Bradley, P. M., Chasar, L. C., Button, D. T., Brigham, M. E., Eikenberry, B. C. S., et al. (2013). Influence of dietary carbon on mercury bioaccumulation in streams of the Adirondack Mountains of New York and the Coastal Plain of South Carolina, USA. Ecotoxicology, 22(1), 60–71.CrossRefGoogle Scholar
  45. Scheuhammer, A. M., Meyer, M. W., Sandheinrich, M. B., & Murray, M. W. (2007). Effects of environmental methylmercury on the health of wild birds, mammals, and fish. Ambio, 36(1), 12–19.CrossRefGoogle Scholar
  46. Scott, W. B., & Crossman, E. J. (1973). Freshwater fishes of Canada (p. 184). Ottawa: Fisheries Research. Board of Canada.Google Scholar
  47. Scott, W. B., & Crossman, E. J. (1974). Poissons d'eau douce du Canada: Service des pêches et des sciences de la mer, Ministère de l'Environnement.Google Scholar
  48. Seminoff, J. A., Bjorndal, K. A., & Bolten, A. B. (2007). Stable carbon and nitrogen isotope discrimination and turnover in pond sliders Trachemys scripta: Insights for trophic study of freshwater turtles. Copeia, 2007(3), 534–542.CrossRefGoogle Scholar
  49. Sorensen, J. A., Glass, G. E., Schmidt, K. W., Huber, J. K., & Rapp, G. R., Jr. (1990). Airborne mercury deposition and watershed characteristics in relation to mercury concentrations in water, sediments, plankton, and fish of eighty northern Minnesota lakes. Environmental Science and Technology, 24(11), 1716–1727.CrossRefGoogle Scholar
  50. Sparling, D. W., & Gorsuch, J. W. (2010). Ecotoxicology of amphibians and reptiles. Boca Raton: CRC Press/Taylor & Francis.CrossRefGoogle Scholar
  51. Stuyt, S. S. M., Chapman, E. E. V., & Campbell, L. M. (2015). Lake and watershed influences on the distribution of elemental contaminants in the Rideau Canal System, a UNESCO world heritage site. Environmental Science and Pollution Research International, 22(15), 11558–73.CrossRefGoogle Scholar
  52. Syväranta, J., Haemaelaeinen, H., & Jones, R. I. (2006). Within‐lake variability in carbon and nitrogen stable isotope signatures. Freshwater Biology, 51(6), 1090–1102.CrossRefGoogle Scholar
  53. Van der Velden, S., Dempson, J., Evans, M., Muir, D., & Power, M. (2013). Basal mercury concentrations and biomagnification rates in freshwater and marine food webs: Effects on Arctic charr (Salvelinus alpinus) from eastern Canada. Science of the Total Environment, 444, 531–542.CrossRefGoogle Scholar
  54. Wang, R., & Wang, W.-X. (2010). Importance of speciation in understanding mercury bioaccumulation in tilapia controlled by salinity and dissolved organic matter. Environmental Science and Technology, 44(20), 7964–7969.CrossRefGoogle Scholar
  55. Wang, W.-X., & Fisher, N. S. (1999). Delineating metal accumulation pathways for marine invertebrates. Science of the Total Environment, 237, 459–472.CrossRefGoogle Scholar
  56. Weed, R., Eber, J., & Rothstein, A. (1962). Interaction of mercury with human erythrocytes. Journal of General Physiology, 45(3), 395–410.CrossRefGoogle Scholar
  57. Yu, X., Driscoll, C. T., Montesdeoca, M., Evers, D., Duron, M., Williams, K., et al. (2011). Spatial patterns of mercury in biota of Adirondack, New York lakes. Ecotoxicology, 20(7), 1543–1554.CrossRefGoogle Scholar
  58. Zhang, L., Campbell, L. M., & Johnson, T. B. (2012). Seasonal variation in mercury and food web biomagnification in Lake Ontario, Canada. Environmental Pollution, 161, 178–184.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Julie L. Châteauvert
    • 1
    Email author
  • Gregory Bulté
    • 2
  • Alexandre J. Poulain
    • 1
  • Linda M. Campbell
    • 3
  • Gabriel Blouin-Demers
    • 1
  1. 1.Department of BiologyUniversity of OttawaOttawaCanada
  2. 2.Department of BiologyCarleton UniversityOttawaCanada
  3. 3.Department of BiologySaint-Mary’s UniversityHalifaxCanada

Personalised recommendations