Advertisement

Water, Air, & Soil Pollution

, 226:330 | Cite as

Effectiveness and Mode of Action of Calcium Nitrate and Phoslock® in Phosphorus Control in Contaminated Sediment, a Microcosm Study

  • Juan Lin
  • Peihuang Qiu
  • Xiangjun Yan
  • Xiong Xiong
  • Liandong Jing
  • Chenxi WuEmail author
Article

Abstract

Calcium nitrate and a lanthanum-modified bentonite (Phoslock®) were investigated for their ability to control the release of phosphorus from contaminated sediment. Their effectiveness and mode of action were assessed using microcosm experiments by monitoring the variation of physiochemical parameters and phosphorus and nitrogen species over time following the treatment for 66 days. Phoslock® was more effective reducing phosphorus in overlaying water and controlling its release from sediment. Calcium nitrate improved redox condition at the sediment-water interface and temporally reduce phosphorus in overlaying water but phosphorus level returned back in a long run. Phosphorus fractionation suggested that Phoslock® converted mobile phosphorus to more stable species while calcium nitrate increased the fractions of mobile phosphorus species. Phoslock® generally showed no effect on nitrogen species. Whereas calcium nitrate temporally increased nitrate, nitrite, and ammonium concentrations but their concentrations quickly reduced likely due to the denitrification process. Results suggested that Phoslock® can be more effective in controlling the release of phosphorus from sediment than calcium nitrate. However, calcium nitrate can improve the redox condition at the sediment-water interface, which may provide other benefits such as stimulating biodegradation.

Keywords

Internal loading Sediment Phosphorus fractionation Nitrogen cycle 

Notes

Acknowledgments

The authors would like to thank the support from the National Major Science and Technology Projects for Pollution Control and Management (2012ZX07104-002-005, 2012ZX07101-007-002), the Major Scientific and Technological Innovation Projects of the Hangzhou City (20131813A04), and the Science and Technology Project of the Ministry of Housing and Urban–rural Development of China (2014-K7-014).

References

  1. Burley, K. L., Prepas, E. E., & Chambers, P. A. (2001). Phosphorus release from sediments in hardwater eutrophic lakes: the effects of redox‐sensitive and‐insensitive chemical treatments. Freshwater Biology, 46(8), 1061–1074.CrossRefGoogle Scholar
  2. Camargo, J. A., & Alonso, Á. (2006). Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environment International, 32(6), 831–849.CrossRefGoogle Scholar
  3. Carpenter, S. R. (2008). Phosphorus control is critical to mitigating eutrophication. Proceedings of the National Academy of Sciences, 105(32), 11039–11040.CrossRefGoogle Scholar
  4. Chen, L., Wang, L., Liu, S., Hu, J., He, Y., Zhou, H., & Zhang, X. (2013). Profiling of microbial community during in situ remediation of volatile sulfide compounds in river sediment with nitrate by high throughput sequencing. International Biodeterioration & Biodegradation, 85, 429–437.CrossRefGoogle Scholar
  5. Dodson, S. I., Arnott, S. E., & Cottingham, K. L. (2000). The relationship in lake communities between primary productivity and species richness. Ecology, 81(10), 2662–2679.CrossRefGoogle Scholar
  6. Foy, R. (1986). Suppression of phosphorus release from lake sediments by the addition of nitrate. Water Research, 20(11), 1345–1351.CrossRefGoogle Scholar
  7. García de Lomas, J., Corzo, A., Gonzalez, J. M., Andrades, J. A., Iglesias, E., & Montero, M. J. (2006). Nitrate promotes biological oxidation of sulfide in wastewaters: experiment at plant-scale. Biotechnology and Bioengineering, 93(4), 801–811.CrossRefGoogle Scholar
  8. Geurts, J. J. M., van de Wouw, P. A. G., Smolder, A. J. P., Roelofs, J. G. M., & Lamers, L. P. M. (2011). Ecological restoration on former agricultural soils: feasibility of in situ phosphate fixation as an alternative to top soil removal. Ecological Engineering, 37(11), 1620–1629.CrossRefGoogle Scholar
  9. Gibbs, M. M., Hickey, C. W., & Özkundakci, D. (2011). Sustainability assessment and comparison of efficacy of four P-inactivation agents for managing internal phosphorus loads in lakes: sediment incubations. Hydrobiologia, 658(1), 253–275.CrossRefGoogle Scholar
  10. Gonsiorczyk, T., Casper, P., & Koschel, R. (1998). Phosphorus-binding forms in the sediment of an oligotrophic and an eutrophic hardwater lake of the Baltic Lake District (Germany). Water Science and Technology, 37(3), 51–58.CrossRefGoogle Scholar
  11. Haghseresht, F., Wang, S., & Do, D. D. (2009). A novel lanthanum-modified bentonite, Phoslock, for phosphate removal from wastewaters. Applied Clay Science, 46(4), 369–375.CrossRefGoogle Scholar
  12. Hansen, J., Reitzel, K., Jensen, H. S., & Andersen, F. Ø. (2003). Effects of aluminum, iron, oxygen and nitrate additions on phosphorus release from the sediment of a Danish softwater lake. Hydrobiologia, 492(1–3), 139–149.CrossRefGoogle Scholar
  13. Hemond, H. F., & Lin, K. (2010). Nitrate suppresses internal phosphorus loading in an eutrophic lake. Water Research, 44(12), 3645–3650.CrossRefGoogle Scholar
  14. Hupfer, M., Gachter, R., & Giovanoli, R. (1995). Transformation of phosphorus species in settling seston and during early sediment diagenesis. Aquatic Sciences, 57(4), 305–324.CrossRefGoogle Scholar
  15. Immers, A. K., Van der Sande, M. T., Van der Zande, R. M., Geurts, J. J. M., Van Donk, E., & Bakker, E. S. (2013). Iron addition as a shallow lake restoration measure: impacts on charophyte growth. Hydrobiologia, 710(1), 241–251.CrossRefGoogle Scholar
  16. Jarvie, H. P., Sharpley, A. N., Withers, P. J., Scott, J. T., Haggard, B. E., & Neal, C. (2013). Phosphorus mitigation to control river eutrophication: murky waters, inconvenient truths, and “postnormal” science. Journal of Environmental Quality, 42(2), 295–304.CrossRefGoogle Scholar
  17. Jeppesen, E., Søndergaard, M., Jensen, J. P., Havens, K. E., Anneville, O., Carvalho, L., et al. (2005). Lake responses to reduced nutrient loading—an analysis of contemporary long‐term data from 35 case studies. Freshwater Biology, 50(10), 1747–1771.CrossRefGoogle Scholar
  18. Jing, L. D., Wu, C. X., Liu, J. T., Wang, H. G., & Ao, H. Y. (2013). The effects of dredging on nitrogen balance in sediment-water microcosms and implications to dredging projects. Ecological Engineering, 52, 167–174.CrossRefGoogle Scholar
  19. Kaiserli, A., Voutsa, D., & Samara, C. (2002). Phosphorus fractionation in lake sediments—Lakes Volvi and Koronia, N. Greece. Chemosphere, 46(8), 1147–1155.CrossRefGoogle Scholar
  20. Kozerski, H. P., & Kleeberg, A. (1998). The sediments and Benthic-Pelagic exchange in the shallow Lake Müggelsee (Berlin, Germany). International Review of Hydrobiology, 83(1), 77–112.CrossRefGoogle Scholar
  21. Liu, G., Ye, C., He, J., Qian, Q., & Jiang, H. (2009). Lake sediment treatment with aluminum, iron, calcium and nitrate additives to reduce phosphorus release. Journal of Zhejiang University Science A, 10(9), 1367–1373.CrossRefGoogle Scholar
  22. Liu, C., Shen, Q., Zhou, Q., Fan, C., & Shao, S. (2015). Precontrol of algae-induced black blooms through sediment dredging at appropriate depth in a typical eutrophic shallow lake. Ecological Engineering, 77, 139–145.CrossRefGoogle Scholar
  23. Lürling, M., & van Oosterhout, F. (2013). Case study on the efficacy of a lanthanum-enriched clay (Phoslock®) in controlling eutrophication in Lake Het Groene Eiland (The Netherlands). Hydrobiologia, 710(1), 253–263. Google Scholar
  24. McAuliffe, T. F., Lukatelich, R. J., McComb, A. J., & Qiu, S. (1998). Nitrate applications to control phosphorus release from sediments of a shallow eutrophic estuary: an experimental evaluation. Marine and Freshwater Research, 49(6), 463–473.CrossRefGoogle Scholar
  25. Meis, S., Spears, B. M., Maberly, S. C., O’Malley, M. B., & Perkins, R. G. (2012). Sediment amendment with Phoslock® in Clatto Reservoir (Dundee, UK): investigating changes in sediment elemental composition and phosphorus fractionation. Journal of Environmental Management, 93(1), 185–193.CrossRefGoogle Scholar
  26. Meis, S., Spears, B. M., Maberly, S. C., & Perkins, R. G. (2013). Assessing the mode of action of Phoslock® in the control of phosphorus release from the bed sediments in a shallow lake (Loch Flemington, UK). Water Research, 47(12), 4460–4473.CrossRefGoogle Scholar
  27. MEPC. (2002). Standard methods for examination of water and wastewater (4th ed.). Beijing: Chinese Environmental Sciences Press.Google Scholar
  28. Murphy, T., Lawson, A., Kumagai, M., & Babin, J. (1999). Review of emerging issues in sediment treatment. Aquatic Ecosystem Health & Management, 2(4), 419–434.CrossRefGoogle Scholar
  29. Ottley, C. J., Davison, W., & Edmunds, W. M. (1997). Chemical catalysis of nitrate reduction by iron (II). Geochimica et Cosmochimca Acta, 61, 1819–1828.CrossRefGoogle Scholar
  30. Pessot, C. A., Atland, A., Liltved, H., Lobos, M. G., & Kristensen, T. (2014). Water treatment with crushed marble or sodium silicate mitigates combined copper and aluminium toxicity for the early life stages of Atlantic salmon (Salmo salar L.). Aquacultural Engineering, 60, 77–83.CrossRefGoogle Scholar
  31. Psenner, R., & Pucsko, R. (1988). Phosphorus fractionation: advantages and limits of the method for the study of sediment P origins and interactions. Archiv für Hydrobiologie–Beiheft Ergebnisse der Limnologie, 30, 43–59.Google Scholar
  32. Psenner, R., Pucsko, R., & Sager, M. (1984). Die Fraktionierung organischer und anorganischer Phosphorverbindungen von Sedimenten–Versuch einer Definition ökologisch wichtiger Fraktionen. Archiv für Hydrobiologie, Supplement, 70, 111–155.Google Scholar
  33. Ramírez, A., Pringle, C. M., & Molina, L. (2003). Effects of stream phosphorus levels on microbial respiration. Freshwater Biology, 48(1), 88–97.CrossRefGoogle Scholar
  34. Reitzel, K., Lotter, S., Dubke, M., Egemose, S., Jensen, H. S., & Andersen, F. Ø. (2013). Effects of Phoslock® treatment and chironomids on the exchange of nutrients between sediment and water. Hydrobiologia, 703(1), 189–202.CrossRefGoogle Scholar
  35. Ripl, W. (1976). Biochemical oxidation of polluted lake sediment with nitrate: a new lake restoration method. Ambio, 5(3), 132–135.Google Scholar
  36. Robb, M., Greenop, B., Goss, Z., Douglas, G., & Adeney, J. (2003). Application of Phoslock™, an innovative phosphorus binding clay, to two Western Australian waterways: preliminary findings. The Interactions between Sediments and Water (pp. 237–243). Springer.Google Scholar
  37. Ross, G., Haghseresht, F., & Cloete, T. E. (2008). The effect of pH and anoxia on the performance of Phoslock®, a phosphorus binding clay. Harmful Algae, 7(4), 545–550.CrossRefGoogle Scholar
  38. Ruban, V., López-Sánchez, J., Pardo, P., Rauret, G., Muntau, H., & Quevauviller, P. (1999). Selection and evaluation of sequential extraction procedures for the determination of phosphorus forms in lake sediment. Journal of Environmental Monitoring, 1(1), 51–56.CrossRefGoogle Scholar
  39. Schauser, I., Chorus, I., & Lewandowski, J. (2006). Effects of nitrate on phosphorus release: comparison of two Berlin lakes. Acta Hydrochimica et Hydrobiologica, 34(4), 325–332.CrossRefGoogle Scholar
  40. Shao, M., Zhang, T., & Fang, H. H. (2009). Autotrophic denitrification and its effect on metal speciation during marine sediment remediation. Water Research, 43, 2961–2968.CrossRefGoogle Scholar
  41. Smith, V. H. (2003). Eutrophication of freshwater and coastal marine ecosystems—a global problem. Environmental Science and Pollution Research, 10(2), 126–139.CrossRefGoogle Scholar
  42. Søndergaard, M., Jeppesen, E., Lauridsen, T. L., Skov, C., Van Nes, E. H., Roijackers, R., Lammens, E., & Portielje, R. (2007). Lake restoration: successes, failures and long‐term effects. Journal of Applied Ecology, 44, 1095–1105.CrossRefGoogle Scholar
  43. Wang, H., Wang, C., Wu, W., & Wang, Z. (2002). Persistent organic pollutants (POPs) in surface sediments of Donghu Lake, Wuhan, Hubei, China. Journal of Environmental Science and Health, Part A, 37(4), 499–507.CrossRefGoogle Scholar
  44. Xie, L., & Xie, P. (2002). Long-term (1956–1999) dynamics of phosphorus in a shallow, subtropical Chinese lake with the possible effects of cyanobacterial blooms. Water Research, 36, 343–349.Google Scholar
  45. Xu, M. Y., Zhang, Q., Xia, C. Y., Zhong, Y. M., Sun, G. P., Guo, J., Yuan, T., Zhou, J., & He, Z. (2014). Elevated nitrate enriches microbial functional genes for potential bioremediation of complexly contaminated sediments. ISME Journal, 8, 1932–1944.CrossRefGoogle Scholar
  46. Yamada, T., Sueitt, A., Beraldo, D., Botta, C., Fadini, P., Nascimento, M., Faria, B. M., & Mozeto, A. A. (2012). Calcium nitrate addition to control the internal load of phosphorus from sediments of a tropical eutrophic reservoir: microcosm experiments. Water Research, 46(19), 6463–6475.CrossRefGoogle Scholar
  47. Zhang, M., Zhang, T., Shao, M. F., & Fang, H. (2009). Autotrophic denitrification in nitrate-induced marine sediment remediation and Sulfurimonas denitrificans-like bacteria. Chemosphere, 76, 677–682.CrossRefGoogle Scholar
  48. Zhang, S. Y., Zhou, Q. H., Xu, D., Lin, J. D., Cheng, S. P., & Wu, Z. B. (2010). Effects of sediment dredging on water quality and zooplankton community structure in a shallow of eutrophic lake. Journal of Environmental Sciences-China, 22(2), 218–224.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of HydrobiologyChinese Academy of SciencesWuhanPeople’s Republic of China
  2. 2.Hangzhou Urban River Supervision CentreHangzhouPeople’s Republic of China
  3. 3.College of Chemistry and Environmental Protection EngineeringSouthwest University of NationalitiesChengduPeople’s Republic of China
  4. 4.Graduate University of the Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations