Water, Air, & Soil Pollution

, 226:306 | Cite as

Phosphate Adsorption onto Granular-Acid-Activated-Neutralized Red Mud: Parameter Optimization, Kinetics, Isotherms, and Mechanism Analysis



Powdered-acid-activated-neutralized red mud (Aan-RM), the chemico-physically modified product of red mud, was for the first time employed with hydroxypropyl methylcellulose and powdered straw as the main ingredients for granular Aan-RM production for phosphate removal. In order to better understand the phosphate adsorption characteristics of granular Aan-RM, the influence of operational parameters on the performance of granular Aan-RM and the possible adsorption mechanisms involved were investigated. The results demonstrated that the adsorbent dosage, adsorption temperature, and initial solution pH influenced the adsorption performance of granular Aan-RM significantly. The maximum phosphate adsorption capacity of granular Aan-RM reached 153.227 mg/g with the granular Aan-RM dosage of 3.0 g/L, adsorption temperature of 40 °C, and initial solution pH of 6.0. The whole adsorption process was well described by nth-order kinetic model and Langmuir–Freundlich isotherm. Meanwhile, X-ray photoelectron spectroscopy (XPS) analysis of P 2p peak on granular Aan-RM after phosphate adsorption demonstrated that 79.01 % of the phosphate was adsorbed through precipitation and ion exchange mechanisms with strong chemical bonds, and 20.99 % of the phosphate was adsorbed through surface deposition mechanism with weak chemical bonds.


Red mud Granule Phosphate adsorption Precipitation Surface deposition 



The authors are thankful to the China Scholarship Council (CSC), the National Natural Science Foundation of China (51178047, 51378190, 51039001), and Furong Scholar of Hunan Province for support.


  1. Angove, M. J., Johnson, B. B., & Wells, J. D. (1998). The influence of temperature on the adsorption of cadmium (II) and cobalt (II) on kaolinite. Journal of Colloid and Interface Science, 204(1), 93–103.CrossRefGoogle Scholar
  2. Babatunde, A. O., Zhao, Y. Q., Yang, Y., & Kearney, P. (2008). Reuse of dewatered aluminium-coagulated water treatment residual to immobilize phosphorus: Batch and column trials using a condensed phosphate. Chemical Engineering Journal, 136(2-3), 108–115.CrossRefGoogle Scholar
  3. Barbaux, Y., Dekiouk, M., Le Maguer, D., Gengembre, L., Huchette, D., & Grimblot, J. (1992). Bulk and surface analysis of a Fe-PO oxydehydrogenation catalyst. Applied Catalysis A: General, 90(1), 51–60.CrossRefGoogle Scholar
  4. Barca, C., Gerente, C., Meyer, D., Chazarenc, F., & Andres, Y. (2012). Phosphate removal from synthetic and real wastewater using steel slags produced in Europe. Water Research, 46(7), 2376–2384.CrossRefGoogle Scholar
  5. Castaldi, P., Silvetti, M., Garau, G., & Deiana, S. (2010). Influence of the pH on the accumulation of phosphate by red mud (a bauxite ore processing waste). Journal of Hazardous Materials, 182(1), 266–272.CrossRefGoogle Scholar
  6. Despland, L. M., Clark, M. W., Vancov, T., Erler, D., & Aragno, M. (2011). Nutrient and trace-metal removal by Bauxsol pellets in wastewater treatment. Environmental Science & Technology, 45(13), 5746–5753.CrossRefGoogle Scholar
  7. Dou, X., Mohan, D., & Pittman, C. U. (2013). Arsenate adsorption on three types of granular schwertmannite. Water Research, 47(9), 2938–2948.CrossRefGoogle Scholar
  8. Genç-Fuhrman, H., Tjell, J. C., & McConchie, D. (2004). Adsorption of arsenic from water using activated neutralized red mud. Environmental Science & Technology, 38(8), 2428–2434.CrossRefGoogle Scholar
  9. Gerente, C., Lee, V. K. C., Le Cloirec, P., & McKay, G. (2007). Application of chitosan for the removal of metals from wastewaters by adsorption-mechanisms and models review. Critical Reviews in Environmental Science and Technology, 37, 41–127.CrossRefGoogle Scholar
  10. Grossl, P. R., Eick, M., Sparks, D. L., Goldberg, S., & Ainsworth, C. C. (1997). Arsenate and chromate retention mechanisms on goethite. 2. Kinetic evaluation using a pressure-jump relaxation technique. Environmental Science & Technology, 31(2), 321–326.CrossRefGoogle Scholar
  11. Huang, W., Wang, S., Zhu, Z., Li, L., Yao, X., Rudolph, V., & Haghseresht, F. (2008). Phosphate removal from wastewater using red mud. Journal of Hazardous Materials, 158(1), 35–42.CrossRefGoogle Scholar
  12. Hui, B., Zhang, Y., & Ye, L. (2014). Preparation of PVA hydrogel beads and adsorption mechanism for advanced phosphate removal. Chemical Engineering Journal, 235, 207–214.CrossRefGoogle Scholar
  13. Kim, G. J., Hyun Kim, J., Moon, H. S., Chon, C. M., & Sung Ahn, J. (2002). Removal capacity of water plant alum sludge for phosphorus in aqueous solutions. Chemical Speciation & Bioavailability, 14(1-4), 67–73.CrossRefGoogle Scholar
  14. Liu, C. J., Li, Y. Z., Luan, Z. K., Chen, Z. Y., Zhang, Z. G., & Jia, Z. P. (2007). Adsorption removal of phosphate from aqueous solution by active red mud. Journal of Environmental Sciences, 19(10), 1166–1170.CrossRefGoogle Scholar
  15. Liu, H., Sha, W., Cooper, A. T., & Fan, M. (2009). Preparation and characterization of a novel silica aerogel as adsorbent for toxic organic compounds. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 347(1), 38–44.CrossRefGoogle Scholar
  16. Luengo, C., Brigante, M., & Avena, M. (2007). Adsorption kinetics of phosphate and arsenate on goethite. A comparative study. Journal of Colloid and Interface Science, 311(2), 354–360.CrossRefGoogle Scholar
  17. Ma, Y., Wang, S. G., Fan, M., Gong, W. X., & Gao, B. Y. (2009). Characteristics and defluoridation performance of granular activated carbons coated with manganese oxides. Journal of Hazardous Materials, 168(2), 1140–1146.CrossRefGoogle Scholar
  18. Meshko, V., Markovska, L., Mincheva, M., & Rodrigues, A. E. (2001). Adsorption of basic dyes on granular activated carbon and natural zeolite. Water Research, 35(14), 3357–3366.CrossRefGoogle Scholar
  19. Milačič, R., Zuliani, T., & Ščančar, J. (2012). Environmental impact of toxic elements in red mud studied by fractionation and speciation procedures. Science of the Total Environment, 426, 359–365.CrossRefGoogle Scholar
  20. Mohana, S., Acharya, B. K., & Madamwar, D. (2009). Distillery spent wash: treatment technologies and potential applications. Journal of Hazardous Materials, 163(1), 12–25.CrossRefGoogle Scholar
  21. Paerl, H. W., & Huisman, J. (2008). Blooms like it hot. Science, 320(5872), 57.CrossRefGoogle Scholar
  22. Pandey, R. A., Malhotra, A., Tankhiwale, S., Pande, S., Pathe, P. P., & Kaul, S. N. (2003). Treatment of biologically treated distillery effluent—a case study. International Journal of Environmental Studies, 60(3), 263–275.CrossRefGoogle Scholar
  23. Pradhan, J., Das, S. N., & Thakur, R. S. (1999). Adsorption of hexavalent chromium from aqueous solution by using activated red mud. Journal of Colloid and Interface Science, 217(1), 137–141.CrossRefGoogle Scholar
  24. Riebe, B., Dultz, S., & Bunnenberg, C. (2005). Temperature effects on iodine adsorption on organo-clay minerals: I. Influence of pretreatment and adsorption temperature. Applied Clay Science, 28(1), 9–16.CrossRefGoogle Scholar
  25. Schreiber, B., Brinkmann, T., Schmalz, V., & Worch, E. (2005). Adsorption of dissolved organic matter onto activated carbon—the influence of temperature, absorption wavelength, and molecular size. Water Research, 39(15), 3449–3456.CrossRefGoogle Scholar
  26. Selvi, K., Pattabhi, S., & Kadirvelu, K. (2001). Removal of Cr (VI) from aqueous solution by adsorption onto activated carbon. Bioresource Technology, 80(1), 87–89.CrossRefGoogle Scholar
  27. Sohsalam, P., & Sirianuntapiboon, S. (2008). Feasibility of using constructed wetland treatment for molasses wastewater treatment. Bioresource Technology, 99(13), 5610–5616.CrossRefGoogle Scholar
  28. Sowmya, A., & Meenakshi, S. (2014). A novel quaternized resin with acrylonitrile/divinylbenzene/vinylbenzyl chloride skeleton for the removal of nitrate and phosphate. Chemical Engineering Journal, 257, 45–55.CrossRefGoogle Scholar
  29. Vanderkooi, G. (1983). Crystal-refined hydrogen-bond potentials for interactions involving the phosphate group. The Journal of Physical Chemistry, 87(25), 5121–5129.CrossRefGoogle Scholar
  30. Vymazal, J. (2014). Constructed wetlands for treatment of industrial wastewaters: a review. Ecological Engineering, 73, 724–751.CrossRefGoogle Scholar
  31. Yahyaei, B., Azizian, S., Mohammadzadeh, A., & Pajohi-Alamoti, M. (2014). Preparation of clay/alumina and clay/alumina/Ag nanoparticle composites for chemical and bacterial treatment of waste water. Chemical Engineering Journal, 247, 16–24.CrossRefGoogle Scholar
  32. Yao, Y., Gao, B., Chen, J., & Yang, L. (2013). Engineered biochar reclaiming phosphate from aqueous solutions: mechanisms and potential application as a slow-release fertilizer. Environmental Science & Technology, 47(15), 8700–8708.Google Scholar
  33. Yao, Y., Gao, B., Inyang, M., Zimmerman, A. R., Cao, X., Pullammanappallil, P., & Yang, L. (2011a). Biochar derived from anaerobically digested sugar beet tailings: characterization and phosphate removal potential. Bioresource Technology, 102(10), 6273–6278.CrossRefGoogle Scholar
  34. Yao, Y., Gao, B., Inyang, M., Zimmerman, A. R., Cao, X., Pullammanappallil, P., & Yang, L. (2011b). Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. Journal of Hazardous Materials, 190(1), 501–507.CrossRefGoogle Scholar
  35. Ye, J., Zhang, P., Hoffmann, E., Zeng, G., Tang, Y., Dresely, J., & Liu, Y. (2014). Comparison of response surface methodology and artificial neural network in optimization and prediction of acid activation of bauxsol for phosphorus adsorption. Water, Air, & Soil Pollution, 225(12), 1–11.CrossRefGoogle Scholar
  36. Yoon, S. Y., Lee, C. G., Park, J. A., Kim, J. H., Kim, S. B., Lee, S. H., & Choi, J. W. (2014). Kinetic, equilibrium and thermodynamic studies for phosphate adsorption to magnetic iron oxide nanoparticles. Chemical Engineering Journal, 236, 341–347.CrossRefGoogle Scholar
  37. Zhang, J., & Stanforth, R. (2005). Slow adsorption reaction between arsenic species and goethite (α-FeOOH): diffusion or heterogeneous surface reaction control. Langmuir, 21(7), 2895–2901.CrossRefGoogle Scholar
  38. Zhao, Y., Wang, J., Luan, Z., Peng, X., Liang, Z., & Shi, L. (2009). Removal of phosphate from aqueous solution by red mud using a factorial design. Journal of Hazardous Materials, 165(1), 1193–1199.CrossRefGoogle Scholar
  39. Zhao, Y., Yue, Q., Li, Q., Xu, X., Yang, Z., Wang, X., Gao, B., & Yu, H. (2012). Characterization of red mud granular adsorbent (RMGA) and its performance on phosphate removal from aqueous solution. Chemical Engineering Journal, 193, 161–168.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Jie Ye
    • 1
    • 2
    • 3
  • Xiangna Cong
    • 4
  • Panyue Zhang
    • 1
    • 2
  • Erhard Hoffmann
    • 3
  • Guangming Zeng
    • 1
    • 2
  • Yan Wu
    • 1
    • 2
  • Haibo Zhang
    • 1
    • 2
  • Wei Fan
    • 1
    • 2
  1. 1.College of Environmental Science and EngineeringHunan UniversityChangshaPeople’s Republic of China
  2. 2.Key Laboratory of Environmental Biology and Pollution Control, Ministry of EducationHunan UniversityChangshaPeople’s Republic of China
  3. 3.Department of Aquatic Environmental EngineeringKarlsruhe Institute of TechnologyKarlsruheGermany
  4. 4.The Institute for Applied Materials IAM-WK, Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations