Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Adsorption of Cs from Water on Surface-Modified MCM-41 Mesosilicate

  • 291 Accesses

  • 8 Citations


Cs is a common radionuclide present in nuclear wastes and released from nuclear power plant accidents. It is hard to be removed from water with traditional technology. The current study aimed at developing of efficient cost-effective adsorbent for removing Cs with modified MCM-41 with specific functional groups –SH. Mesoporous material MCM-41 was selected due to its large surface area and tunable pore structure. Functional –SH groups were grafted into the pores of MCM-41 to enhance its capability of selective adsorption of Cs from multi-element (Co, Sr) water solution. The adsorption results showed that the maximum adsorption capacity was 29.24 mg/g. Both Langmuir and Freundlich models described the adsorption processes of Cs, indicating co-existence of both monolayer and multilayer adsorption in the surface and inner pores of the materials. TEM, FTIR, and Raman spectroscopy analyses indicated that –SH groups were successfully bounded into the pores of MCM-41. The present study approved the surface functional modified MCM-41 which might be a good alternative candidate for cleaning up of radionuclide Cs from nuclear power plant accidents and relevant nuclear accident events.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Arafat, H. A., Asae, S. B., Bakel, A. J., Bowers, D. L., Gelis, A. V., Regalbuto, M. C., & Vandegrift, G. F. (2010). The application of in situ formed mixed iron oxides in the removal of strontium and actinides from nuclear tank waste. AIChE Journal, 56(11), 3012–3020.

  2. Balarama Krishna, M. V., Rao, S. V., Arunachalam, J., Murali, M. S., Kumar, S., & Manchanda, V. K. (2004). Removal of 137Cs and 90Sr from actual low level radioactive waste solutions using moss as a phyto-sorbent. Seperation and Purification Technology, 38, 149–161.

  3. Bhatnagar, A., Minocha, A. K., & Sillanpää, M. (2010). Adsorptive removal of cobalt from aqueous solution by utilizing lemon peel as biosorbent. Biochemical Engineering Journal, 48(2), 181–186.

  4. Choi, K., Sheng, J., Lee, M. C., & Song, M. J. (2000). Utilizing the KEP-A glass frit to vitrify low level radioactive waste from Korean NPPs. Waste Management, 20(7), 575–580.

  5. Desta, M.B. (2013). Batch sorption experiments: Langmuir and Freundlich isotherm studies for the adsorption of textile metal ions onto Teff Straw (Eragrostis tef) agricultural waste. Journal of Thermodynamics. doi:10.1155/2013/375830.

  6. Dinesh Mohana, S. C. (2006). Single, binary, and multicomponent sorption of iron and manganese on lignite. Journal of Colloid and Interface Science, 299(1), 76–87.

  7. El-Kamash, A. M. (2008). Evaluation of zeolite A for the sorptive removal of Cs+ and Sr2+ ions from aqueous solutions using batch and fixed bed column operations. Journal of Hazard Material, 151(2–3), 432–445.

  8. Frank, H., Cornelius, M., Morell, J., & Froba, M. (2006). Silica-based mesoporous organic–inorganic hybrid materials. Angewandte Chemie International Edition, 45(20), 3216–3251.

  9. Fryxell, G. E., Mattigod, S. V., Lin, Y., Wu, H., Fiskum, S., Parker, K., Zheng, F., Yantasee, W., Zemanian, T. S., Addleman, R. S., Liu, J., Kemner, K., Kelly, S., & Feng, X. (2007). Design and synthesis of self-assembled monolayers on mesoporous supports (SAMMS): The importance of ligand posture in functional nanomaterials. Journal of Material Chemistry, 17, 2863–2874.

  10. Galo, J., de, A., Soler-Illia, A., Sanchez, C., Lebeau, B., & Patarin, J. (2002). Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures. Chemical Review, 102(11), 4093–4138.

  11. Gardiner, D.J., & Graves, P.R. (1989). Practical Raman Spectroscopy. Berlin, Heidelberg, New York: Springer-Verlag.

  12. Greenwood, R., & Kendall, K. (1999). Selection of suitable dispersants for aqueous suspensions of zirconia and titania powders using Acoustophoresis. Journal of European Ceramic Society, 19(4), 479–488.

  13. Hakami, O., Zhang, Y., & Banks, C. J. (2012). Thiol-functionalised mesoporous silica-coated magnetite nanoparticles for high efficiency removal and recovery of Hg from water. Water Research, 46(12), 3913–3922.

  14. Hameed, B. H., Din, A. T. M., & Ahmad, A. L. (2007). Adsorption of methylene blue onto bamboo-based activated carbon: kinetics and equilibrium studies. Journal of Hazardous Materials, 141(3), 819–825.

  15. Hanaor, D. A. H., Michelazzi, M., Leonelli, C., & Sorrell, C. C. (2012). The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO2. Journal of European Ceramic Society, 32(1), 235–244.

  16. LaForge, J., & Urfer, B. (2011). Earthquake & tsunami stagger six Japanese reactors radiation released, fuel melting, broad evacuations ordered. Resource document. Nukewatch. http://www.nukewatchinfo.org/japan/index.html. Accessed spring 2011.

  17. Launer, P. J. (1987). Infrared analysis of organosilicon compounds: spectra-structure correlations. In Silicone compounds register and review (pp. 100–103). Bristol, PA: Petrarch Systems.

  18. Liu, J., Feng, X., Fryxell, G. E., Wang, L. Q., Kim, A. Y., & Gong, M. (1998). Hybrid mesoporous materials with functionalized monolayers. Advanced Materials, 10(2), 161–165.

  19. Liu, Y., Phenrat, T., & Lowry, G. V. (2007). Effect of TCE concentration and dissolved groundwater solutes on NZVI-promoted TCE dechlorination and H2 evolution. Environmental Science and Technology, 41(22), 7881–7887.

  20. Mamba, B. B., Nyembe, D. W., & Mulaba-Bafubiandi, A. F. (2009). Removal of copper and cobalt from aqueous solutions using natural clinoptilolite. Water SA, 35(3), 307–314.

  21. Nowack, B., & Sigg, L. (1996). Adsorption of EDTA and metal–EDTA complexes onto goethite. Journal of Colloid and Interface Science, 177, 106–121.

  22. Nuwan, A., Weerasekara, K.-H. C., & Choi, S. J. (2013). Metal oxide enhanced microfiltration for the selective removal of Co and Sr ions from nuclear laundry wastewater. Journal of Membrane Science, 447, 87–95.

  23. O’Carroll, D., Sleep, B., Krol, M., Boparai, H., & Kocur, C. (2013). Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Advances in Water Resources, 51, 104–122.

  24. Özer, A., & Pirinççi, H. B. (2006). The adsorption of Cd(II) ions on sulphuric acid-treated wheat bran. Journal of Hazardous Materials, 137(2), 849–855.

  25. Park, Y., Lee, Y. C., Shin, W. S., & Choi, S. J. (2010). Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate–polyacrylonitrile (AMP–PAN). Chemical Engineering Journal, 162(2), 685–695.

  26. Park, Y., Shin, W. S., & Choi, S.-J. (2012). Sorptive removal of cobalt, strontium and cesium onto manganese and iron oxide-coated montmorillonite from groundwater. Journal of Radioanalytical and Nuclear Chemistry, 292(2), 837–852.

  27. Pérez, N., Sánchez, M., Rincón, G., & Delgado, L. (2007). Study of the behavior of metal adsorption in acid solutions on lignin using a comparison of different adsorption isotherms. Latin American Applied Research, 37(2), 157–162.

  28. Pérez-Quintanilla, D., Sánchez, A., del Hierro, I., Fajardo, M., & Sierra, I. (2009). Preconcentration of Zn(II) in water samples using a new hybrid SBA-15-based material. Journal of Hazardous Material, 166(2–3), 1449–1458.

  29. Rana, D., Matsuura, T., Kassim, M. A., & Ismail, A. F. (2013). Radioactive decontamination of water by membrane processes—a review. Desalination, 321, 77–92.

  30. Reed, B. E., & Matsumoto, M. R. (1993). Modeling cadmium adsorption by activated carbon using the Langmuir and Freundlich isotherm expressions. Separation Science and Technology, 28(13–14), 2179–2195.

  31. Reichinger, M. (2007). Poröse silicate mit hierarchischer porenstruktur: synthese von mikro-/mesoporösen MCM-41 und MCM-48 materialien aus zeolithischen baueinheiten des MFI-Gerüststrukturtyps. PhD. diss.

  32. Seliman, A. F., Borai, E. H., Lasheen, Y. F., Abo-Aly, M. M., DeVol, T. A., & Powell, B. A. (2010). Mobility of radionuclides in soil/groundwater system: comparing the influence of EDTA and four of its degradation products. Environmental Pollution, 158, 3077–3084.

  33. Smith, J.T., & Beresford, N.A. (2005). Chernobyl—catastrophe and consequences. Chichester, UK: Springer, Praxis Publishing Ltd.

  34. Sulaymon, A. H., Abid, B. A., & Al-Najar, J. A. (2009). Removal of lead copper chromium and cobalt ions onto granular activated carbon in batch and fixed-bed adsorbers. Chemical Engineering Journal, 155(3), 647–653.

  35. Tranter, T., Herbst, R., Todd, T., Olson, A., & Eldredge, H. (2002). Evaluation of ammonium molybdophosphate-polyacrylonitrile (AMP-PAN) as a cesium selective sorbent for the removal of 137Cs from acidic nuclear waste solutions. Advanced Environmental Research, 6(2), 107–121.

  36. Turgis, R., Arrachart, G., Delchet, C., Rey, C., Barré, Y., Pellet-Rostaing, S., Guari, Y., Larionova, J., & Grandjean, A. (2013). An original “click and bind” approach for immobilizing copper hexacyanoferrate nanoparticles on mesoporous silica. Chemistry of Materials, 25(21), 4447–4453.

  37. Valle-Vigón, P., Sevilla, M., & Fuertes, A. B. (2013). Carboxyl-functionalized mesoporous silica-carbon composites as highly efficient adsorbents in liquid phase. Microporous and Mesoporous Material, 176, 78–85.

  38. Yoshitake, H., Yokoi, T., & Tatsumi, T. (2003). Adsorption behavior of arsenate at transition metal cations captured by amino-functionalized mesoporous silicas. Chemistry of Materials, 15(8), 1713–1721.

  39. Yu, S., Mei, H., Chen, X., Tan, X., Ahmed, B., Alsaedi, A., Hayat, T., & Wang, X. (2015). Impact of environmental conditions on the sorption behavior of radionuclide 90Sr(II) on Na-montmorillonite. Journal of Molecular Liquids, 203, 39–46.

  40. Zakrzewska-Trznadel, G., Harasimowicz, M., & Chmielewski, A. G. (2001). Membrane processes in nuclear technology-application for liquid radioactive waste treatment. Separation and Purification Technology, 22–23, 617–625.

  41. Zhu, B. W., Lim, T. T., & Feng, J. (2008). Influences of amphiphiles on dechlorination of a trichlorobenzene by nanoscale Pd/Fe: adsorption, reaction kinetics, and interfacial interactions. Environmental Science and Technology, 42(12), 4513–4519.

Download references


This research was supported by US Nuclear Regulatory Commission (NRC–HQ-12-G-38-0038), NOAAECSC grant (NA11SEC4810001), and NIH-RCMI grant (G12MD007581).

Author information

Correspondence to Fengxiang Han.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, K., Han, F., Arslan, Z. et al. Adsorption of Cs from Water on Surface-Modified MCM-41 Mesosilicate. Water Air Soil Pollut 226, 288 (2015). https://doi.org/10.1007/s11270-015-2565-5

Download citation


  • Adsorption
  • Cs
  • MCM-41-SH
  • ICP-MS