Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

CO2 Capture on Metallic Oxide Powders Prepared Through Chemical Combustion and Calcination Methods

  • 185 Accesses

  • 5 Citations


Mg, Zn, Mn, and Al oxide powders have been synthesized through chemical combustion and calcination methods to compare their CO2 capture performances. The characteristic properties of the adsorbents were evaluated by X-ray diffraction analysis, scanning electron microscopy, and N2 physisorption measurements. The porous γ-Al2O3 prepared through combustion with a BET-specific surface area of 192.1 m2/g, achieving a maximum gas adsorption capacity of 1.71 mmol/g at 60 °C and 1.5 MPa. The MgO adsorbent performed poorly during CO2 capture, while that Zn and Mn oxides showed no CO2 adsorption. The results showed theoretical contribution to the field of separation science.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Al-Abadleh, H. A., & Grassian, V. H. (2003). Oxide surfaces as environmental interfaces. Surface Science Reports, 52, 63–161.

  2. Alvarado-Ibarra, Y., Granados-Correa, F., Lara, V. H., Bosch, P., & Bulbulian, S. (2009). Nickel (II) sorption on porous ZnO prepared by solution combustion method. Colloids and Surface A: Physicochemical and Engineering Aspects, 345, 135–140.

  3. Anbia, M., Hoseini, V., & Sheykhi, S. (2012). Sorption of methane, hydrogen and carbon dioxide on metal-organic framework, iron terephthalate (MOF-235). Journal of Industrial and Engineering Chemistry, 18, 1149–1152.

  4. Cai, W., Tan, L., Yu, J., Jaroniec, M., Liu, X., Cheng, B., & Verpoort, F. (2014). Synthesis of amino-functionalized mesoporous alumina with enhanced affinity towards Cr(VI) and CO2. Chemical Engineering Journal, 239, 207–215.

  5. Carruthers, J. D., Petruska, M. A., Sturm, E. A., & Wilson, M. (2012). Molecular sieve carbons for CO2 capture. Microporous and Mesoporous Materials, 154, 62–67.

  6. Chandrappa, K. C., Venkatesha, T. V., Nayana, K. O., & Punithkumar, M. K. (2011). Generation of nanocrystalline NiO particles by solution combustion method and its Zn-NiO composite coating for corrosion protection. Materials and Corrosion, 62, 1–11.

  7. Chang, R. (2007). Chemistry. China: McGraw Hill.

  8. Chen, C., Park, D., & Ahn, W. (2014). CO2 capture using zeolite 13X prepared from bentonite. Applied Surface Science, 292, 63–67.

  9. Cheung, O., Liu, Q., Bacsik, Z., & Hedin, N. (2012). Silicoaluminophosphates as CO2 sorbents. Microporous and Mesoporous Materials, 156, 90–96.

  10. Chidi, O. P., & Salome, F. T. (2013). High pressure CO2 uptake of amine modified commercial activated carbon. Asian Journal of Engineering Technology, 1, 50–58.

  11. Czaun, M., Goeppert, A., May, R. B., Peltier, D., Zhang, H., & Prakash, S. (2013). Organoamines-grafted and nano-sized silica for carbon dioxide capture. Journal of CO2 Utilization, 1, 1–7.

  12. Granados-Correa, F., & Jiménez-Becerril, J. (2012). The effect of the calcination temperature of boehmite on its Co(II) adsorption properties. Journal of Ceramic Processing Research, 13, 142–148.

  13. Granados-Correa, F., Bonifacio-Martínez, J., Lara, V. H., Bosch, P., & Bulbulian, S. (2008). Cobalt sorption properties of MgO prepared by solution combustion. Applied Surface Science, 254, 4688–4694.

  14. Hedin, N., Andersson, L., Berstrom, L., & Yan, J. (2013). Adsorbents for the post-combustion capture of CO2 using rapid temperature swing or vacuum swing adsorption. Applied Energy, 104, 418–433.

  15. Kang, K. (2013). The method of capturing CO2 greenhouse gas in cellulose matrix. Journal of Environmental Chemical Engineering, 1, 92–95.

  16. Kingsley, J. J., & Pederson, L. R. (1993). Combustion synthesis of perovskite LnCrO3powders using ammonium dichromate. Materials Letters, 18, 89–96.

  17. Lowell, S. (1979). Introduction to powder surface area. Toronto: Intercience Publishers.

  18. Lu, W., Sculley, J. P., Yuan, D., Krishna, R., Wei, Z., & Zhou, H. (2012). Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas. Angewandte Chemie International Edition, 51, 7480–7484.

  19. Moroto-Valer, M. M., Fauth, D. J., Kuchta, M. E., Zhang, Y., & Andrésen, J. M. (2005). Activation of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration. Fuel Process Technology, 86, 1627–1645.

  20. Sharma, S. K., Pitale, S. S., Malik, P. M., Dubey, R. N., Qureshi, M. S., & Ojha, S. (2010). Influence of fuel/oxidizer ratio on lattice parameters and morphology of combustion synthesized ZnO powders. Physica B, 405, 866–874.

  21. Shen, W., He, Y., Zhang, S., Li, J., & Fan, W. (2012). Yeast-based microporous carbon materials for carbon dioxide capture. Chemsuschem, 5, 1274–1279.

  22. Wang, S., Yan, S., Ma, X., & Gong, J. (2011). Recent advances in capture of carbon dioxide using alkali-metal-based oxides. Energy and Environmental Science, 4, 3805–3819.

  23. Wang, Y., Liu, J., Kan, M., & Liu, Z. (2013). The synthesis of lithium aluminate materials and its performance of CO2 absorption. Advanced Material Research, 669, 115–118.

  24. Wang, K., Wang, X., Zhao, P., & Guo, X. (2014a). High-temperature capture of CO2 on lithium-based sorbents prepared by a water-based sol–gel technique. Chemical Engineering and Technology, 37, 1552–1558.

  25. Wang, K., Zhao, P., Guo, X., Han, D., & Chao, Y. (2014b). High-temperature CO2 capture cycles of hydrated limestone prepared with aluminum (hydr)oxides derived from kaolin. Energy Conversion and Management, 86, 1147–1153.

  26. Yamasaki, A. (2003). An overview of CO2 mitigation options for global warming-emphasizing CO2 sequestration options. Journal of Chemical Engineering of Japan, 36, 361–375.

  27. Yuan, Q., Yin, A. X., Luo, C., Sun, L. D., Zhang, Y. W., Duan, W. T., Liu, H. C., & Yan, C. H. (2008). Facile synthesis for ordered mesoporous γ-aluminas with high thermal stability. Journal of the American Chemical Society, 130, 3465–3472.

  28. Zhu, X., Fu, Y., Hu, G., Shen, Y., Dai, W., & Hu, X. (2012). CO2 capture with activated carbons prepared by petroleum coke and KOH at low pressure. Water, Air, and Soil Pollution, 224, 1387–1392.

Download references


The authors are grateful to the ININ, México, for financial support through projects CB-305 and CB-406. The authors would like thank Irving Noriega-Nolasco for his help and support during this project.

Author information

Correspondence to F. Granados-Correa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Granados-Correa, F., Bonifacio-Martínez, J., Hernández-Mendoza, H. et al. CO2 Capture on Metallic Oxide Powders Prepared Through Chemical Combustion and Calcination Methods. Water Air Soil Pollut 226, 281 (2015).

Download citation


  • CO2 capture
  • Porous metallic oxides
  • Combustion synthesis
  • Calcination synthesis
  • X-ray diffraction
  • Adsorption properties