Can Simple Soil Parameters Explain Field-Scale Variations in Glyphosate-, Bromoxyniloctanoate-, Diflufenican-, and Bentazone Mineralization?

  • Trine Norgaard
  • Lis W. de Jonge
  • Per Moldrup
  • Preben Olsen
  • Anders R. Johnsen
Article

Abstract

The large spatial heterogeneity in soil physico-chemical and microbial parameters challenges our ability to predict and model pesticide leaching from agricultural land. Microbial mineralization of pesticides is an important process with respect to pesticide leaching since mineralization is the major process for the complete degradation of pesticides without generation of metabolites. The aim of our study was to determine field-scale variation in the potential for mineralization of the herbicides glyphosate, bromoxyniloctanoate, diflufenican, and bentazone and to investigate whether this variation can be predicted by variations in basic soil parameters. Sixty-five soil samples were sampled from an agricultural, loamy field in Silstrup, Denmark, from a 60 × 165 m rectangular grid. The mineralization potential of the four pesticides was determined using a 96-well microplate 14C-radiorespirometric method. Initial mineralization rates were determined using first-order kinetics for glyphosate and bromoxyniloctanoate and zero-order kinetics for diflufenican and bentazone. The mineralization rates of the four pesticides varied between the different pesticides and the different soil samples, but we could not establish correlations between the pesticide mineralization rates and the measured soil parameters. Only the glyphosate mineralization rates showed slightly increasing mineralization potentials towards the northern area of the field, with increasing clay and decreasing OC contents. The mineralization potentials for glyphosate and bentazone were compared with 9-years leaching data from two horizontal wells 3.5 m below the field. The field-scale leaching patterns, however, could not be explained by the pesticide mineralization data. Instead, field-scale pesticide leaching may have been governed by soil structure and preferential flow events.

Keywords

Field-scale variation Pesticide mineralization Soil characterization Correlation analysis Pesticide leaching 

References

  1. Alexander, M. (1995). How toxic are toxic chemicals in soil. Environmental Science & Technology, 29, 2713–2717.CrossRefGoogle Scholar
  2. Badawi, N., Johnsen, A. R., Sorensen, J., & Aamand, J. (2013). Centimeter-scale spatial variability in 2-methyl-4-chlorophenoxyacetic acid mineralization increases with depth in agricultural soil. Journal of Environmental Quality, 42, 683–689.CrossRefGoogle Scholar
  3. Bending, G. D., Lincoln, S. D., Sorensen, S. R., Morgan, J. A. W., Aamand, J., & Walker, A. (2003). In-field spatial variability in the degradation of the phenyl-urea herbicide isoproturon is the result of interactions between degradative Sphingomonas spp. and soil pH. Applied and Environmental Microbiology, 69, 827–834.CrossRefGoogle Scholar
  4. Bending, G. D., Lincoln, S. D., & Edmondson, R. N. (2006). Spatial variation in the degradation rate of the pesticides isoproturon, azoxystrobin and diflufenican in soil and its relationship with chemical and microbial properties. Environmental Pollution, 139, 279–287.CrossRefGoogle Scholar
  5. Benoit, P., Madrigal, I., Preston, C. M., Chenu, C., & Barriuso, E. (2008). Sorption and desorption of non-ionic herbicides onto particulate organic matter from surface soils under different land uses. European Journal of Soil Science, 59, 178–189.CrossRefGoogle Scholar
  6. Borggaard, O. K., & Gimsing, A. L. (2008). Fate of glyphosate in soil and the possibility of leaching to ground and surface waters: a review. Pest Management Science, 64, 441–456.CrossRefGoogle Scholar
  7. Collins, R. F. (1973). Perfusion studies with bromoxynil octanoate in soil. Pesticide Science, 4, 181–192.CrossRefGoogle Scholar
  8. de Jonge, H., de Jonge, L. W., & Jacobsen, O. H. (2000). [C-14]glyphosate transport in undisturbed topsoil columns. Pest Management Science, 56, 909–915.CrossRefGoogle Scholar
  9. de Jonge, H., de Jonge, L. W., Jacobsen, O. H., Yamaguchi, T., & Moldrup, P. (2001). Glyphosate sorption in soils of different pH and phosphorus content. Soil Science, 166, 230–238.CrossRefGoogle Scholar
  10. de Jonge, L. W., Moldrup, P., & Schjonning, P. (2009). Soil infrastructure, interfaces and translocation processes in inner space (‘soil-it-is’): towards a road map for the constraints and crossroads of soil architecture and biophysical processes. Hydrology and Earth System Sciences, 13, 1485–1502.CrossRefGoogle Scholar
  11. Dechesne, A., Badawi, N., Aamand, J., & Smets, B. F. (2014). Fine scale spatial variability of microbial pesticide degradation in soil: scales, controlling factors, and implications. Frontiers in Microbiology, 5.Google Scholar
  12. Dexter, A. R., Richard, G., Arrouays, D., Czyz, E. A., Jolivet, C., & Duval, O. (2008). Complexed organic matter controls soil physical properties. Geoderma, 144, 620–627.CrossRefGoogle Scholar
  13. El Sebai, T., Lagacherie, B., Soulas, G., & Martin-Laurent, F. (2007). Spatial variability of isoproturon mineralizing activity within an agricultural field: geostatistical analysis of simple physicochemical and microbiological soil parameters. Environmental Pollution, 145, 680–690.CrossRefGoogle Scholar
  14. Fredslund, L., Vinther, F. P., Brinch, U. C., Elsgaard, L., Rosenberg, P., & Jacobsen, C. S. (2008). Spatial variation in 2-methyl-4-chlorophenoxyacetic acid mineralization and sorption in a sandy soil at field. Journal of Environmental Quality, 37, 1918–1928.CrossRefGoogle Scholar
  15. Gee, G. W., & Or, D. (2002). Methods of soil analysis. Part 4. Physical methods. Madison: Soil Science Society of America.Google Scholar
  16. Ghafoor, A., Jarvis, N. J., Thierfelder, T., & Stenstrom, J. (2011). Measurements and modeling of pesticide persistence in soil at the catchment scale. Science of the Total Environment, 409, 1900–1908.CrossRefGoogle Scholar
  17. Gimsing, A. L., Borggaard, O. K., Jacobsen, O. S., Aamand, J., & Sorensen, J. (2004). Chemical and microbiological soil characteristics controlling glyphosate mineralisation in Danish surface soils. Applied Soil Ecology, 27, 233–242.CrossRefGoogle Scholar
  18. Gonod, L. V., Chadoeuf, J., & Chenu, C. (2006). Spatial distribution of microbial 2,4-dichlorophenoxy acetic acid mineralization from field to microhabitat scales. Soil Science Society of America Journal, 70, 64–71.CrossRefGoogle Scholar
  19. Hurley, M. A., & Roscoe, M. E. (1983). Automated statistical-analysis of microbial enumeration by dilution series. Journal of Applied Bacteriology, 55, 159–164.CrossRefGoogle Scholar
  20. Hybholt, T. K., Aamand, J., & Johnsen, A. R. (2011). Quantification of centimeter-scale spatial variation in PAH, glucose and benzoic acid mineralization and soil organic matter in road-side soil. Environmental Pollution, 159, 1085–1091.CrossRefGoogle Scholar
  21. Johnsen, A. R., Hybholt, T. K., Jacobsen, O. S., & Aamand, J. (2009). A radiorespirometric method for measuring mineralization of [C-14]-compounds in a 96-well microplate format. Journal of Microbiological Methods, 79, 114–116.CrossRefGoogle Scholar
  22. Kjær, J., Ernsten, V., Jacobsen, O. H., Hansen, N., de Jonge, L. W., & Olsen, P. (2011). Transport modes and pathways of the strongly sorbing pesticides glyphosate and pendimethalin through structured drained soils. Chemosphere, 84, 471–479.CrossRefGoogle Scholar
  23. Lecomte, V., Barriuso, E., Bresson, L. M., Koch, C., & Le Bissonnais, Y. (2001). Soil surface structure effect on isoproturon and diflufenican loss in runoff. Journal of Environmental Quality, 30, 2113–2119.CrossRefGoogle Scholar
  24. Lindhardt, B., Abildtrup, C., Vosgerau, H., Olsen, P., Torp, S., Iversen, B. V., Jørgensen, J. O., Plauborg, F., Rasmussen, P., & Gravesen, P. (2001). The Danish pesticide leaching assessment programme—site characterization and monitoring design. Copenhagen: Geological Survey of Denmark and Greenland. ISBN: 87-7871-094-4.Google Scholar
  25. McGrath, G. S., Hinz, C., Sivapalan, M., Dressel, J., Putz, T., & Vereecken, H. (2010). Identifying a rainfall event threshold triggering herbicide leaching by preferential flow. Water Resources Research, 46, W02513.CrossRefGoogle Scholar
  26. Miljøstyrelsen. (2014). Bekæmpelsesmiddel-statistik 2013. København K: Miljøstyrelsen. ISBN: 978-87-93283-33-6.Google Scholar
  27. Norgaard, T., Moldrup, P., Olsen, P., Vendelboe, A. L., Iversen, B. V., Greve, M. H., Kjaer, J., & de Jonge, L. W. (2012). Comparative mapping of soil physical-chemical and structural parameters at field scale to identify zones of enhanced leaching risk. Journal of Environmental Quality, 42, 271–283.CrossRefGoogle Scholar
  28. Norgaard, T., Moldrup, P., Ferre, T. P. A., Olsen, P., Rosenbom, A. E., & de Jonge, L. W. (2014). Leaching of glyphosate and aminomethylphosphonic acid from an agricultural field over a twelve-year period. Vadose Zone Journal, 13. doi: 10.2136/vzj2014.2105.0054.
  29. Nowak, K. M., Miltner, A., Gehre, M., Schaffer, A., & Kastner, M. (2011). Formation and fate of bound residues from microbial biomass during 2,4-D degradation in soil. Environmental Science & Technology, 45, 999–1006.CrossRefGoogle Scholar
  30. Paradelo, M., Norgaard, T., Moldrup, P., Ferré, T. P. A., Kumari, K. G. I. D., Arthur, E. & de Jonge, L. W. (2015). Prediction of the glyphosate sorption coefficient across two loamy agricultural fields. Geoderma, Submitted.Google Scholar
  31. Rasmussen, J., Aamand, J., Rosenberg, P., Jacobsen, O. S., & Sørensen, S. R. (2005). Spatial variability in the mineralisation of the phenylurea herbicide linuron within a Danish agricultural field: multivariate correlation to simple soil parameters. Pest Management Science, 61, 829–837.CrossRefGoogle Scholar
  32. Rodríguez-Cruz, M. S., Jones, J. E., & Bending, G. D. (2006). Field-scale study of the variability in pesticide biodegradation with soil depth and its relationship with soil characteristics. Soil Biology & Biochemistry, 38, 2910–2918.CrossRefGoogle Scholar
  33. Rosenbom, A. E., Brüsch, W., Juhler, R. K., Ernstsen, V., Gudmundsson, L., Kjær, J., Plauborg, F., Grant, R., Nyegaard, P., & Olsen, P. (2010). The Danish pesticide leaching assessment programme—monitoring results May 1999-June 2009. Geological Survey of Denmark and Greenland, ISBN: 978-87-7871-252-3.Google Scholar
  34. Rosenbom, A. E., Binning, P. J., Aamand, J., Dechesne, A., Smets, B. F., & Johnsen, A. R. (2014). Does microbial centimeter-scale heterogeneity impact MCPA degradation in and leaching from a loamy agricultural soil? Science of the Total Environment, 472, 90–98.CrossRefGoogle Scholar
  35. Rosenbom, A. E., Olsen, P., Plauborg, F., Grant, R., Juhler, R. K., Brüsch, W., & Kjær, J. (2015). Pesticide leaching through sandy and loamy fields—long-term lessons learnt from the Danish Pesticide Leaching Assessment Programme. Environmental Pollution, 201, 75–90.CrossRefGoogle Scholar
  36. Rosenbrock, P., Munch, J. C., Scheunert, I., & Dorfler, U. (2004). Biodegradation of the herbicide bromoxynil and its plant cell wall bound residues in an agricultural soil. Pesticide Biochemistry and Physiology, 78, 49–57.CrossRefGoogle Scholar
  37. Röver, M., & Kaiser, E. A. (1999). Spatial heterogeneity within the plough layer: low and moderate variability of soil properties. Soil Biology & Biochemistry, 31, 175–187.CrossRefGoogle Scholar
  38. Schoumans, O. F. (2000). Determination of the degree of phosphate saturation in non-calcareous soils. In G. M. Pierzynski (Ed.), Methods of phosphorus analysis for soils, sediments, residuals, and waters (pp. 31–34). Raleigh NC (USA), North Carolina State Univ. South. coop. Ser. Bull. 396/Publ. SERA-IEG 17.Google Scholar
  39. Shymko, J. L., & Farenhorst, A. (2008). 2,4-D mineralization in unsaturated and near-saturated surface soils of an undulating, cultivated Canadian prairie landscape. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes, 43, 34–43.CrossRefGoogle Scholar
  40. Stenrød, M., Charnay, M. P., Benoit, P., & Eklo, O. M. (2006). Spatial variability of glyphosate mineralization and soil microbial characteristics in two Norwegian sandy loam soils as affected by surface topographical features. Soil Biology & Biochemistry, 38, 962–971.CrossRefGoogle Scholar
  41. Tomlin, C. D. S. (2000). The pesticide manual: a world compendium (12th ed.). Farnham: British Crop Protection Council.Google Scholar
  42. Vereecken, H. (2005). Mobility and leaching of glyphosate: a review. Pest Management Science, 61, 1139–1151.CrossRefGoogle Scholar
  43. Vinther, F. P., Brinch, U. C., Elsgaard, L., Fredslund, L., Iversen, B. V., Torp, S., & Jacobsen, C. S. (2008). Field-scale variation in microbial activity and soil properties in relation to mineralization and sorption of pesticides in a sandy soil. Journal of Environmental Quality, 37, 1710–1718.CrossRefGoogle Scholar
  44. Walker, A., Jurado-Exposito, M., Bending, G. D., & Smith, V. J. R. (2001). Spatial variability in the degradation rate of isoproturon in soil. Environmental Pollution, 111, 407–415.CrossRefGoogle Scholar
  45. Wauchope, R. D., Buttler, T. M., Hornsby, A. G., Augustijnbeckers, P. W. M., & Burt, J. P. (1992). The SCS/ARS/CES pesticide properties database for environmental decision-making. Reviews of Environmental Contamination and Toxicology, 123, 1–155.CrossRefGoogle Scholar
  46. Zablotowicz, R. M., Krutz, L. J., Accinelli, C., & Reddy, K. N. (2009). Bromoxynil degradation in a Mississippi silt loam soil. Pest Management Science, 65, 658–664.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Trine Norgaard
    • 1
  • Lis W. de Jonge
    • 1
  • Per Moldrup
    • 2
  • Preben Olsen
    • 1
  • Anders R. Johnsen
    • 3
  1. 1.Department of Agroecology, Faculty of Science and TechnologyAarhus UniversityTjeleDenmark
  2. 2.Department of Civil EngineeringAalborg UniversityAalborg SVDenmark
  3. 3.Department of GeochemistryGeological Survey of Denmark and Greenland (GEUS)Copenhagen KDenmark

Personalised recommendations