Developing Critical Loads of Nitrate and Sulfate Deposition to Watersheds of the Great Smoky Mountains National Park, USA

  • Qingtao ZhouEmail author
  • Charles T. Driscoll
  • Stephen E. Moore
  • Matt A. Kulp
  • James R. Renfro
  • John S. Schwartz
  • Meijun Cai
  • Jason A. Lynch


Long-term impacts of acidic deposition on the Great Smoky Mountains National Park (GRSM) include elevated inputs of sulfate, nitrate, and ammonium; the depletion of available nutrient cations from soil; and acidification of high-elevation streams. Critical loads and target loads (CLs/TLs) are useful tools to help guide future air quality management. We evaluated past and potential future effects of nitrate and sulfate deposition for 12 watersheds in the GRSM, USA, using the hydrochemical model, photosynthesis evapotranspiration biogeochemical (PnET-BGC). Two of the streams studied were listed by the state of Tennessee as impaired due to low stream pH. We reconstructed historical meteorological, atmospheric deposition, and land disturbance data for study watersheds for the period 1850 to present for model hindcasts. As future emissions are expected to decline, the model was run under a range of future scenarios from 2008 to 2200 of decreases in sulfate, nitrate, and ammonium and combinations of sulfate and nitrate deposition to estimate CLs and TLs of how watersheds might respond to emission control strategies. Model simulations of stream chemistry generally agreed with long-term (>10 years) observations. Model hindcasts indicate that watersheds in the GRSM are inherently sensitive to acidic deposition. Simulated mean projected stream ANC of 71 μeq/L (range 32 to 107 μeq/L) prior to industrial development (~1850) decreases in response to historical acidic deposition to 33 μeq/L (−13 to 88 μeq/L) in 2007. Future model projections show that decreases in sulfate deposition result in smaller increases in stream ANC compared with equivalent decreases in nitrate deposition; simultaneous controls on nitrate and sulfate deposition are more effective in ANC increases than individual control of nitrate or sulfate. Although there are no current programs in the USA to control ammonia emissions, model simulations suggest that decreases in ammonium deposition could also help mitigate acidification to a greater extent than equivalent controls on nitrate deposition.


Acidic deposition Acidification modeling Critical loads Great Smoky Mountains National Park Watersheds 



This work was supported by the National Park Service under Agreement H54710090015 signed September 25, 2009.

Supplementary material

11270_2015_2502_MOESM1_ESM.doc (1.3 mb)
Table A1 (DOC 1363 kb)
11270_2015_2502_MOESM2_ESM.doc (621 kb)
Table A2 (DOC 621 kb)
11270_2015_2502_MOESM3_ESM.doc (644 kb)
Table A3 (DOC 644 kb)
11270_2015_2502_MOESM4_ESM.doc (617 kb)
Table A4 (DOC 617 kb)
11270_2015_2502_MOESM5_ESM.doc (792 kb)
Table A5 (DOC 792 kb)
11270_2015_2502_MOESM6_ESM.doc (790 kb)
Table A6 (DOC 790 kb)
11270_2015_2502_MOESM7_ESM.doc (608 kb)
Table A7 (DOC 608 kb)


  1. Aber, J. D., & Driscoll, C. T. (1997). Effects of land use, climate variation, and N deposition on N cycling and C storage in northern hardwood forests. Global Biogeochemical Cycles, 11, 639–648.CrossRefGoogle Scholar
  2. Aber, J. D., Ollinger, S. V., & Driscoll, C. T. (1997). Modeling nitrogen saturation in forest ecosystems in response to land use and atmospheric deposition. Ecological Modelling, 101, 61–78.CrossRefGoogle Scholar
  3. Baron, J. S., Driscoll, C. T., Stoddard, J. L., & Richer, E. (2011). Empirical critical loads of atmospheric nitrogen deposition for nutrient enrichment and acidification of sensitive US lakes. BioScience, 61, 602–613.CrossRefGoogle Scholar
  4. Burns, D. A., Blett, T., Haeuber, R., & Pardo, L. H. (2008). Critical loads as a policy tool for protecting ecosystems from the effects of air pollutants. Frontiers in Ecology and the Environment, 6, 156–159.CrossRefGoogle Scholar
  5. Cai, M., Schwartz, J. S., Robinson, R. B., Moore, S. E., & Kulp, M. A. (2010). Long-term effects of acid deposition on water quality in a high-elevation Great Smoky Mountain National Park watershed: use of n ion input–output budget. Water, Air, and Soil Pollution, 209, 143–156.CrossRefGoogle Scholar
  6. Cai, M., Johnson, A. M., Schwartz, J. S., Moore, S. E., & Kulp, M. A. (2011). Response of soil water chemistry to simulated changes in acid deposition in the Great Smoky Mountains. ASCE Journal of Environmental Engineering, 137(7), 617–628.CrossRefGoogle Scholar
  7. Cai, M., Johnson, A. M., Schwartz, J. S., Moore, S. E., & Kulp, M. A. (2012). Soil acid–base chemistry of a high-elevation forest watershed in the Great Smoky Mountains National Park: influence of acidic deposition. Water, Air, and Soil Pollution, 223, 289–303.CrossRefGoogle Scholar
  8. Chen, L., & Driscoll, C. T. (2004). An evaluation of processes regulating spatial and temporal patterns in lake sulfate in the Adirondack region of New York. Global Biogeochemical Cycles, 18, GB3024.Google Scholar
  9. Chen, L., & Driscoll, C. T. (2005). Regional application of an integrated biogeochemical model to northern New England and Maine. Ecological Applications, 15, 1783–1797.CrossRefGoogle Scholar
  10. Cook, R. B., Elwood, J. W., Turner, R. R., Bogle, M. A., Mulholland, P. J., & Palumbo, A. V. (1994). Acid–base chemistry of high-elevation streams in the Great Smoky Mountains. Water, Air, and Soil Pollution, 72, 331–356.CrossRefGoogle Scholar
  11. Deyton, E. B., Schwartz, J. S., Robinson, R. B., Neff, K. J., Moore, S. E., & Kulp, M. A. (2009). Characterizing episodic stream acidity during stormflows in the Great Smoky Mountains National Park. Water, Air, and Soil Pollution, 194, 3–18.CrossRefGoogle Scholar
  12. Driscoll, C. T., Lawrence, G. B., Bulger, A. J., Butler, T. J., Cronan, C. S., Eagar, C., Lambert, K., Likens, G. E., Stoddard, J. L., & Weathers, K. C. (2001). Acidic deposition in the Northeastern United States: Sources and inputs, ecosystem effects, and management strategies. BioScience, 51, 180–198.Google Scholar
  13. Elwood, J. W., Sale, M. J., Kaufmann, P. R., & Cada, G. F. (1991). The Southern Blue Ridge Province. In D. F. Charles (Ed.), Acidic deposition and aquatic ecosystems. Regional case studies (pp. 319–364). New York: Springer-Verlag.CrossRefGoogle Scholar
  14. Gbondo-Tugbawa, S. S., & Driscoll, C. T. (2003). Factors controlling long-term changes in soil pools of exchangeable basic cations and stream acid neutralizing capacity in a northern hardwood forest ecosystem. Biogeochemistry, 63, 161–185.Google Scholar
  15. Gbondo-Tugbawa, S. S., Driscoll, C. T., Aber, J. D., & Likens, G. E. (2001). Evaluation of an integrated biogeochemical model (PnET-BGC) at a northern hardwood forest ecosystem. Water Resources Research, 37, 1057–1070.CrossRefGoogle Scholar
  16. Grell, M. (2010). Soil chemistry characterization of acid sensitive watersheds in Great Smoky Mountains National Park. Ph.D. Dissertation. The University of Tennessee, Knoxville.Google Scholar
  17. Ito, M., Mitchell, M. J., & Driscoll, C. T. (2002). Spatial patterns of precipitation quantity and chemistry and air temperature in the Adirondack region of New York. Atmospheric Environment, 36, 1051–1062.CrossRefGoogle Scholar
  18. Janssen, P. H. M., & Heuberger, P. S. C. (1995). Calibration of process-oriented models. Ecological Modelling, 83, 55–66.CrossRefGoogle Scholar
  19. Johnson, D. W., & Lindberg, S. E. (1992). Atmospheric deposition and forest nutrient cycling: a synthesis of the integrated forest study. New York: Springer-Verlag.CrossRefGoogle Scholar
  20. Kahl, J. S., Stoddard, J. L., Haeuber, R., Paulsen, S. G., Birnbaum, R., Deviney, F. A., Webb, J. R., DeWalle, D. R., Sharpe, W., Driscoll, C. T., et al. (2014). Have U.S. surface waters responded to the 1990 Clean Air Act amendments? Environmental Science and Technology, 38, 484A–490A.CrossRefGoogle Scholar
  21. Lehmann, C., Bowersox, V., & Larson, S. (2005). Spatial and temporal trends of precipitation chemistry in the United States, 1985–2002. Environmental Pollution, 135, 347–361.CrossRefGoogle Scholar
  22. McNulty, S. G., Cohen, E. C., Myers, J. A. M., Sullivan, T. J., & Li, H. (2007). Estimates of critical acid loads and exceedances for forest soils across the conterminous United States. Environmental Pollution, 149, 281–292.CrossRefGoogle Scholar
  23. Moore, P. T., Van Miegroet, H., & Nicholas, N. S. (2008). Examination of forest recovery scenarios in a southern Appalachian Picea-Abies forest. Forestry, 81, 183–194.CrossRefGoogle Scholar
  24. Neff, K. J., Schwartz, J. S., Henry, T. B., Robinson, R. B., Moore, S. E., & Kulp, M. A. (2009). Physiological stress in native southern brook trout during episodic stream acidification in the Great Smoky Mountains National Park. Archives of Environment Contamination and Toxicology, 57, 366–376. doi: 10.1007/s00244-008-9269-4.CrossRefGoogle Scholar
  25. Neff, K. J., Schwartz, J. S., Moore, S. E., & Kulp, M. A. (2013). Influence of basin characteristics on episodic stream acidification in the Great Smoky Mountains National Park, USA. Hydrocarbon Processing, 27, 2061–2074. doi: 10.1002/hyp.9366.CrossRefGoogle Scholar
  26. Nicholas, N. S., & Zedaker, S. M. (1989). Ice damage in spruce–fir forests of the Black Mountains, North Carolina. Canadian Journal of Forest Research, 19, 1487–1491.CrossRefGoogle Scholar
  27. Nilsson, J., and Grennfelt, P. (1988). Critical loads for sulphur and nitrogen. UNECE/Nordic Council workshop report, Skokloster, Sweden. March 1988. Nordic Council of Ministers: Copenhagen. 418 pp.Google Scholar
  28. Nodvin, S. C., Van Miegroet, H., Lindberg, S. E., Nicholas, N. S., & Johnson, D. W. (1995). Acidic deposition, ecosystem processes, and nitrogen saturation in a high elevation Southern Appalachian Watershed. Water, Air, and Soil Pollution, 85, 1647–1652.CrossRefGoogle Scholar
  29. Ollinger, S. V., Aber, J. D., Lovett, G. M., Millham, S. E., Lathrop, R. G., & Ellis, J. M. (1993). A spatial model of atmospheric deposition for the northeastern U S. Ecological Applications, 3, 459–472.CrossRefGoogle Scholar
  30. Pardo, L.H. (2010). Approaches for estimating critical loads of N and S deposition for forest ecosystems on U.S. federal lands. Gen. Technical Rep. NRS-71 USDA For. Serv. North. Res. Stn. Newtown Sq. Pa. USA.Google Scholar
  31. Pardo, L. H., Fenn, M., Goodale, C. L., Geiser, L. H., Driscoll, C. T., Allen, E., Baron, J., Bobbink, R., Bowman, W. D., Clark, C., et al. (2011). Effects of nitrogen deposition and empirical nitrogen critical loads for ecoregions of the United States. Ecological Applications, 21, 3049–3082.CrossRefGoogle Scholar
  32. Porter, E., Blett, T., Potter, D. U., & Huber, C. (2005). Protecting resources on federal lands: implications of critical loads for atmospheric deposition of nitrogen and sulfur. Bioscience, 55, 603–612.CrossRefGoogle Scholar
  33. Pourmokhtarian, A., Driscoll, C.T., Campbell, J.L., and Hayhoe, K. (2012). Modeling potential hydrochemical responses to climate change and rising CO2 at the Hubbard Brook Experimental Forest using a dynamic biogeochemical model (PnET-BGC). Water Resour. Res. 48, W07514, 13 pp.Google Scholar
  34. Pyle, C. (1985). Vegetation disturbance history of Great Smoky Mountains National Park: an analysis of archival maps and records. Natl. Park Serv.-Southeast Reg. Res. Manag. Rep. SER-77. 69 pp.Google Scholar
  35. Rice, K. C., Scanlon, T. M., Lynch, J. A., & Cosby, B. J. (2014). Decreased atmospheric deposition across the Southeastern U.S.: when will watersheds release stored sulfate? Environmental Science and Technology, 48, 10071–10078.CrossRefGoogle Scholar
  36. Robinson, R. B., Barnett, T. W., Harwell, G. R., Moore, S. E., Kulp, M., & Schwartz, J. S. (2008). pH and acid anion time trends in different elevation ranges in the Great Smoky Mountains National Park. Journal Environmental Engineering ASCE, 134, 800–808.CrossRefGoogle Scholar
  37. Schwartz, J.S., Gonzalez, A., Neff, K.J., Moore, S.E., and Kulp, M.A. (2013). Great Smoky Mountains National Park 2013 Water Quality Report. Prepared for the US Dept. of Interior, National Park Service. University of Tennessee—Knoxville, Department of Civil and Environmental Engineering. September 2014.Google Scholar
  38. Schwartz, J.S., Cai, M., Kulp, M.A., Moore, S.E., Nichols, B., and Parker., C. (2014). Biological effects of stream water quality on aquatic macroinvertebrates and fish communities within the Great Smoky Mountains National Park. Natural Resource Report NPS/GRSM/NRR-2014/778, NPS, Ft. Collins, CO.Google Scholar
  39. Shannon, J. D. (1981). A model of regional long-term average sulfur atmospheric pollution, surface removal, and net horizontal flux. Atmospheric Environment, 15, 689–701.CrossRefGoogle Scholar
  40. Smith, G. F., & Nicholas, N. S. (2000). Size and age class distributions of Fraser fir following balsam woolly adelgid infestation. Canadian Journal of Forest Research, 30, 948–957.CrossRefGoogle Scholar
  41. Sullivan, T. J., Cosby, B. J., Driscoll, C. T., McDonnell, T. C., Herlihy, A. T., and Burns, D. A. (2012). Target loads of atmospheric sulfur and nitrogen deposition for protection of acid sensitive aquatic resources in the Adirondack Mountains, New York. Water Resour. Res. 48, W01547, 16 pp.Google Scholar
  42. TDEC (2010). Proposed total maximum load (TMDL) for low pH in the Great Smoky Mountains National Park located in the Pigeon River Watershed (HUC 06010106), Lower French Broad River Watershed (HUC 06010107), Watts Bar Lake Watershed (HUC 06010201), Cocke and Sevier County, Tennessee (prepared by Tennessee Department of Environment and Conservation Division of Water Pollution Control).Google Scholar
  43. USEPA (2009). Risk and exposure assessment for review of the secondary national ambient air quality standards for oxides of nitrogen and oxides of sulfur. EPA-452/P-09-004a.Google Scholar
  44. Van Breemen, N., Mulder, J., & Driscoll, C. T. (1983). Acidification and alkalization of soils. Plant and Soil, 75, 283visiGoogle Scholar
  45. Weathers, K. C., Simkin, S. M., Lovett, G. M., & Lindberg, S. E. (2006). Empirical modeling of atmospheric deposition in mountainous landscapes. Ecological Applications, 16, 1590–1607.CrossRefGoogle Scholar
  46. White, P. S., & Cogbill, C. V. (1992). Spruce-fir forests of Eastern North America. In: Ecology and decline of red spruce in the Eastern United States. New York: Springer-Verlag.CrossRefGoogle Scholar
  47. Zhai, J., Driscoll, C. T., Sullivan, T. J., and Cosby, B. J. (2008). Regional application of the PnET-BGC model to assess historical acidification of Adirondack lakes. Water Resour. Res, 44, W01421. doi: 10.1029/2006WR005532.

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Qingtao Zhou
    • 1
    Email author
  • Charles T. Driscoll
    • 2
  • Stephen E. Moore
    • 2
  • Matt A. Kulp
    • 2
  • James R. Renfro
    • 2
  • John S. Schwartz
    • 3
  • Meijun Cai
    • 3
  • Jason A. Lynch
    • 4
  1. 1.Department of Civil and Environmental EngineeringSyracuse UniversitySyracuseUSA
  2. 2.National Park ServiceGatlinburgUSA
  3. 3.Department of Civil and Environmental EngineeringUniversity of TennesseeKnoxvilleUSA
  4. 4.Clean Air Markets DivisionUS Environmental Protection AgencyWashingtonUSA

Personalised recommendations