Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Production of Volatile Fatty Acids during the Hydrolysis and Acidogenesis of Pistia stratiotes Using Ruminal Fluid

  • 517 Accesses

  • 8 Citations


Aquatic plant biomass has been shown to have a great potential for biogas production. The use of ruminal fluid has been shown to improve the degradation of the lignocellulosic material with its conversion into volatile fatty acids (VFA) during a first phase of hydrolysis–acidogenesis. VFAs are important as the feedstock for methane and hydrogen production in a second phase process within a biorefinery. The objective of this work was to produce a high yield of VFA during a first phase of anaerobic hydrolysis–acidogenesis of Pistia stratiotes biomass assessing the effect of the use of rumen fluid as inoculum and of daily adjustment of pH in batch-operated reactors. One liter anaerobic reactors containing 15 gSV L−1 of P. stratiotes biomass were incubated at 30 ± 2 °C and agitated once a day. The inoculum concentration had no significant effect on the increase in VFA concentration and 20 % (V/V) was used in all treatments. The final average VFA concentration and conversion coefficients from VS to VFA in the inoculated treatment with no pH adjustment (T1) and with pH adjustment (T2) (1817 mgCOD L−1 and 0.1319 mgVFA mgVS−1, respectively) were significantly higher than those found in the treatment with no inoculum (T0). There were no significant differences between T0 and T1 in the VS degradation rate. In contrast, the degradation rate in T2 was significantly higher. Thus, the addition of ruminal fluid promoted the production of VFA, and the pH adjustment had no significant effect on this parameter but did influence the biomass degradation.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. Abbasi, S. A., & Nipaney, P. C. (1991). Biogas production from the aquatic weed Pistia (Pistia stratiotes). Bioresource Technology, 37(3), 211–214.

  2. ANKOM Technology. (2011a). Acid detergent fiber in feeds filter bags techniques. Method 5.

  3. ANKOM Technology. (2011b). Neutral detergent fiber in feeds filter bags techniques. Method 6.

  4. ANKOM Technology. (2011c). Acid detergent lignin in beakers. Method 8.

  5. APHA, AWWA, WPCF. (1998). Standard Methods for the Examination of Water and Wastewater. 20th Ed. NY, USA.

  6. Awuah, E., Anohene, F., Asante, K., Lubberding, H., & Gijzen, H. (2001). Environmental conditions and pathogen removal in macrophyte- and algal-based domestic wastewater treatment systems. Water Science and Technology, 44(6), 11–18.

  7. Barnes, S. P., & Keller, J. (2004). Anaerobic rumen SBR for degradation of cellulosic material. Water Science and Technology, 50(10), 305–311.

  8. Bayané, A., & Guiot, S. R. (2011). Animal digestive strategies versus anaerobic digestion bioprocesses for biogas production from lignocellulosic biomass. Reviews in Environmental Science and Biotechnology, 10(1), 43–62.

  9. Benerjee, A., & Matai, S. (1990). Composition of Indian aquatic plants in relation to utilization as animal forage. Journal of Aquatic Plant Management, 28(15), 69–73.

  10. Carranco, M. E., Castillo, R. M., Escamilla, A., Martínez, M., Pérez-Gil, F., & Stephan, E. (2002). Composición química, extracción de proteína foliar y perfil de aminoácidos de siete plantas acuáticas. Revista Cubana de Ciencia Agrícola, 36(3), 247–258.

  11. Chang, H. N., Kim, N.-J., Kang, J., & Jeong, C. M. (2010). Biomass-derived volatile fatty acid platform for fuels and chemicals. Biotechnology and Bioprocess Engineering, 15(1), 1–10.

  12. Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of anaerobic digestion process: a review. Bioresource Technology, 99(10), 4044–4064.

  13. Contreras, P. A., & Noro, M. (2010). Rumen: morfología, trastornos y modulación de la actividad fermentativa. Valdivia: América.

  14. Cysneiros, D., Banks, C. J., Heaven, S., & Karatzas K-A, G. (2012). The role of phase separation and feed cycle length in leach beds coupled to methanogenic reactors for digestion of a solid substrate (part 1): optimisation of reactors’ performance. Bioresource Technology, 103(1), 56–63.

  15. Dijkstra, J., Ellis, J. L., Kebreab, E., Strathe, A. B., López, S., France, J., et al. (2012). Ruminal pH regulation and nutritional consequiences of low pH. Animal Feed Science and Technology, 172(1–2), 22–33.

  16. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350–356.

  17. Durán, U., Gómez, J., Monroy, O., & Ramírez, F. (2011). The effect of vinyl acetate in acetoclastic methanogenesis. Bioresource Technology, 102(2), 1644–1648.

  18. Fezzani, B., & Cheikh, R. B. (2010). Two-phase anaerobic co-digestion of olive mill wastes in semi-continuous digesters at mesophilic temperature. Bioresource Technology, 101(6), 1628–1634.

  19. HACH. (2000a). Chemical oxygen demand, Reactor digestion method. Method 8000.

  20. HACH. (2000b). Volatile acids, Esterification method. Method 8196.

  21. Henry-Silva, G. G., & Camargo, A. F. M. (2002). Valor nutritivo de macrófitas aquáticas flutuantes (Eichhornia crassipes, Pistia stratiotes e Salvinia molesta) utilizadas no tratamento de efluentes de aqüicultura. Maringá: Acta Scientiarum, 24(37), 519–526.

  22. Hu, Z.-H., & Yu, H.-Q. (2006). Anaerobic digestion of cattail by rumen cultures. Waste Management, 26(11), 1222–1228.

  23. Hu, Z.-H., Yu, H.-Q., & Zheng, J.-C. (2006). Application of response surface methodology for optimization of acidogenesis of cattail by rumen cultures. Bioresource Technology, 97(16), 2103–2109.

  24. Hu, Z. H., Yu, H. Q., Yue, Z. B., Harada, H., & Li, Y. Y. (2007). Kinetic analysis of anaerobic digestion of cattail by rumen microbes in a modified UASB reactor. Biochemical Engineering Journal, 37(2), 219–225.

  25. Ince, O. (1998). Performance of a two-phase anaerobic digestion system when treating dairy waster. Water Research, 32(9), 2707–2713.

  26. Islas, J., Manzini, F., & Masera, O. (2007). A prospective study of bioenergy use in Mexico. Energy, 32(12), 2306–2320.

  27. Jensen, P. D., Hardin, M. T., & Clarke, W. P. (2009). Effect of biomass concentration and inoculum source on the rate of anaerobic cellulose solubilization. Bioresource Technology, 100(21), 5219–5225.

  28. Lehtomäki, A. (2006). Biogas production from energy crops and crop residues. Jyväskylä: University of Jyväskylä.

  29. Lettinga, G. (1995). Anaerobic digestion and wastewater treatment systems. Antonie Van Leeuwenhoek, 67(1), 3–28.

  30. Lu, Q., He, Z. L., Graetz, D. A., Stoffella, P. J., & Yang, X. (2010). Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.). Environmental Science and Pollution Research, 17(1), 84–96.

  31. Mouriño, F., Akkarawongsa, R., & Weimer, P. J. (2001). Initial pH as a determinant of cellulose digestion rate by mixed ruminal microorganisms in vitro. Journal of Dairy Science, 84(4), 848–859.

  32. Nipaney, P. C., & Panholzer, M. B. (1987). Influence of temperature on biogas production from Pistia stratiotes. Biological Wastes, 19(4), 267–274.

  33. Nizami, A. S., & Murphy, J. D. (2010). What type of digester configurations should be employed to produce biomethane from grass silage? Renewable and Sustainable Energy Reviews, 14(6), 1558–1568.

  34. Olguín, E. J. (2012). Dual purpose microalgae–bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a Biorefinery. Biotechnology Advances, 30(5), 1031–1046.

  35. Olguín, E. J., Sánchez-Galván, G., Pérez-Pérez, T., & Pérez-Orozco, A. (2005). Surface adsorption, intracellular acumulation and compartmentalization of Pb(II) in batch-operated lagoons with Salvinia minima as affected by environmental conditions, EDTA and nutrients. Journal Industrial Microbiology & Biotechnology, 32(11–12), 577–586.

  36. Olguín, E. J., Sánchez-Galván, G., & Pérez-Pérez, T. (2007). Assessment of the Phytoremediation potential of Salvinia minima Baker compared to Spirodela polyrrhiza in high-strength organic wastewater. Water Air and Soil Pollution, 181(1–4), 135–147.

  37. Olguín, E. J., González-Portela, R. E., Sánchez-Galván, G., Zamora-Castro, J. E., & Owen, T. (2010). Contaminación de ríos urbanos: El caso de la subcuenca del Río Sordo en Xalapa, Veracruz, México. Revista Latinoamericana de Biotecnología Ambiental y Algal, 1(2), 178–190.

  38. O'Sullivan, C., Rounsefell, B., Grinham, A., Clarke, W., & Udy, J. (2010). Anaerobic digestion of harvested aquatic weeds: water hyacinth (Eichhornia crassipes), cabomba (Cabomba Caroliniana) and salvinia (Salvinia molesta). Ecological Engineering, 36(10), 1459–1468.

  39. Procházka, J., Mrázek, J., Strosová, L., Fliegerová, K., Zábranská, J., & Dohányos, M. (2012). Enhanced biogas yield from energy crops with rumen anaerobic fungi. Engineering in Life Sciences, 12(3), 343–351.

  40. Rodríguez, R., Julio, C., & Palma, J. (2000). Valor nutritivo del repollito de agua (Pistia stratiotes L.) y su posible uso en la alimentación animal. Zootecnia Tropical, 18(2), 213–226.

  41. Russell, J. B., & Wilson, D. B. (1996). Why are ruminal cellulolytic bacteria unable to digest cellulose at low pH? Journal of Dairy Science, 79(8), 1503–1509.

  42. Sánchez-Galván, G., Mercado, F. J., & Olguín, E. J. (2013). Leaves and roots of Pistia stratiotes as sorbent materials for the removal of crude oil from saline solutions. Water Air Soil Pollution, 224, 1421–1433.

  43. Shen, F., Yuan, H., Pang, Y., Chen, S., Zhu, B., Zou, D., Liu, Y., Ma, J., Yu, L., & Li, X. (2013). Performances of anaerobic co-digestion of fruit & vegetable waste (FVW) and food waste (FW): Single-phase vs. two-phase. Bioresource Technology, 144, 80–85.

  44. Siegert, I., & Banks, C. (2005). The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochemistry, 40(11), 3412–3418.

  45. Sooknah, R. D., & Wilkie, A. C. (2004). Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecological Engineering, 22(1), 27–44.

  46. Sträuber, H., Schröder, M., & Kleinsteuber, S. (2012). Metabolic and microbial community dynamics during the hydrolytic and acidogenic fermentation in a leach-bed process. Energy Sustainability and Society, 2(1), 1–10.

  47. Vavilin, V. A., Fernandez, B., Palatsi, J., & Flotats, X. (2008). Hydrolysis kinetics in anaerobic degradation of particulate organic material. An owerview. Waste Management, 28(6), 939–951.

  48. Yue Z.B., Yu H.Q., Harada H., Li Y.Y., (2007a). Optimization of anaerobic acidogenesis of an aquatic plant, Canna indica L., by rumen cultures. Water Research, 41(11), 2361–2370

  49. Yue, Z.-B., Yu, H.-Q., & Wang, Z.-L. (2007b). Anaerobic digestion of cattail with rumen culture in the presence of heavy metals. Bioresource Technology, 98(4), 781–786.

  50. Yue, Z.-B., Wang, J., Liu, X.-M., & Yu, H.-Q. (2012). Comparison of rumen microorganisms and digester sludge dominated anaerobic digestion processes for aquatic plants. Renewable Energy, 46, 255–258.

  51. Yue, Z.-B., Li, W.-W., & Yu, H.-Q. (2013). Application of rumen microorganisms for anaerobic bioconversion of lignocellulosic biomass. Bioresource Technology, 128, 738–744.

  52. Zennaki, Z., Zaid, A., Bentaya, K., & Boulif, M. (1997). Optimization of anaerobic digestion of cattle manure effect of its association with the aquatic weed pistia (Pistia stratiotes). Tropicultura, 15(2), 51–55.

  53. Zhao, B.-H., Yue, Z.-B., Ni, B.-J., Mu, Y., Yu, H.-Q., & Harada, H. (2009). Modeling anaerobic digestion of aquatic plants by rumen cultures: cattail as an example. Water Research, 43(7), 2047–2055.

Download references


This study was funded by the Ministry of Energy (SENER) and the National Council of Science and Technology Mexico (CONACYT) through the grant 152931. Héctor Hernández-García received a scholarship (409049/261224) for graduate studies from CONACYT.

Compliance with Ethical Standards

This research did not involve human participants and/or animals.

Conflict of Interest

The authors declare that they have no competing interests.

Author information

Correspondence to E. J. Olguín.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hernández-García, H., Olguín, E.J., Sánchez-Galván, G. et al. Production of Volatile Fatty Acids during the Hydrolysis and Acidogenesis of Pistia stratiotes Using Ruminal Fluid. Water Air Soil Pollut 226, 317 (2015). https://doi.org/10.1007/s11270-015-2494-3

Download citation


  • Anaerobic digestion
  • Lignocellulosic material
  • Floating macrophyte