Advertisement

Water, Air, & Soil Pollution

, 226:418 | Cite as

Fluoroquinolone Antibacterial Agent Contaminants in Soil/Groundwater: A Literature Review of Sources, Fate, and Occurrence

  • Guoli Chen
  • Miao Li
  • Xiang LiuEmail author
Article

Abstract

Fluoroquinolone antibacterial agents (FQs) are the most commonly detected antibiotics in soil/groundwater which cause chronic effects on human beings as well as aquatic ecosystems. The current situation of the regulation, occurrence, fate, and sources of FQs in soil/groundwater was systematically analyzed in this paper. And then, the important factors affecting milligram per liter concentration of FQs sorption in soil, such as pH, cation exchange, clay minerals, organic content, surface complexation, and microbial degradation or transformation, were summarized. Actually, nanogram-microgram per liter concentration is detected frequently in soil/groundwater by far. Due to the extensive application of FQs and its relatively stable physicochemical characteristics, the higher concentration in soil/groundwater would appear in the coming decades which may exert a threat to freshwater and human beings. To the knowledge of the authors, no full-scale fate, occurrence, spatial, and temporal variations of FQs in soil/groundwater have been reported in the scientific literature. Therefore, it is recommended that more comprehensive studies are required to fill knowledge gaps in low-concentration transport, fate and occurrence, spatial, and temporal variations of FQs in soil/groundwater and their potential risk assessment to human and ecosystem.

Keywords

Fluoroquinolone antibacterial agents Review Groundwater Soil 

Notes

Acknowledgments

The authors thank the Special Science and Technology Project of National Water Pollution Control and Management of China (No. 2012ZX07301-001) and the Special Environmental Research Funds for Public Welfare (No. 201209053). The authors thank Weiqi Li for the comments on the early version of this paper. The authors also thank the two anonymous reviewers for their invaluable and constructive comments and suggestions for improving the paper quality.

References

  1. Barber, L. B., Keefe, S. H., Leblanc, D. R., Bradley, P. M., Chapelle, F. H., Meyer, M. T., Loftin, K. A., Kolpin, D. W., & Rubio, F. (2009). Fate of sulfamethoxazole, 4-nonylphenol, and 17β-estradiol in groundwater contaminated by wastewater treatment effluent. Environmental Science & Technology, 43, 4843–4850.CrossRefGoogle Scholar
  2. Barbosa, J., Barrón, D., Jiménez-Lozano, E., & Sanz-Nebot, V. (2001a). Comparison between capillary electrophoresis, liquid chromatography, potentiometric, and spectrophotometric techniques for evaluation of pKa values of zwitterionic drugs in acetonitrile-water mixtures. Analytica Chimica Acta, 437, 309–321.CrossRefGoogle Scholar
  3. Barbosa, J., Barrón, D., Cano, J., Jiménez-Lozano, E., Sanz-Nebot, V., & Toro, I. (2001b). Evaluation of electrophoretic method versus chromatographic, potentiometric, and absorptiometric methodologies for determining pKa values of quinolones in hydroorganic mixtures. Journal of Pharmaceutical and Biomedical Analysis, 24, 1087–1098.CrossRefGoogle Scholar
  4. Boxall, A. B. A., Kolpin, D. W., Halling-Sorensen, B., & Tolls, J. (2003). Are veterinary medicines causing environmental risks? Environmental Science & Technology, 37, 286A–294A.CrossRefGoogle Scholar
  5. Brown, K. D., Kulis, J., Thomson, B., Chapman, T. H., & Mawhinney, D. B. (2006). Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico. Science of the Total Environment, 366(23), 772–783.CrossRefGoogle Scholar
  6. Carmosini, N., & Lee, L. S. (2009). Ciprofloxacin sorption by dissolved organic carbon from reference and bio-waste materials. Chemosphere, 77, 813–820.CrossRefGoogle Scholar
  7. Cheng, G. U., & Kanrthikeyan, K. G. (2005). Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides. Environmental Science & Technology, 39, 916–973.Google Scholar
  8. Conkle, J. L., Lattao, C., White, J. R., & Cook, R. L. (2010). Competitive sorption and desorption behavior for three fluoroquinolone antibiotics in a wastewater treatment wetland soil. Chemosphere, 80, 1353–1359.CrossRefGoogle Scholar
  9. Costanzo, S. D., Murby, J., & Bates, J. (2005). Ecosystem response to antibiotics entering the aquatic environment. Marine Pollution Bulletin, 51(14), 218–223.CrossRefGoogle Scholar
  10. Diaz-Cruz, M. S., LopezdeAlda, M. J., & Barcelo, D. (2003). Environmental behavior and analysis of veterinary and human drugs in soils, sediments and sludge. TRAC-Trend Analytical Chemistry, 22(6), 340–351.CrossRefGoogle Scholar
  11. EMEA. (2006). Guideline on environmental impact assessment for veterinary medicinal products in support of the VICH guidelines GL 6 and GL 38. (Draft Veterinary TGD). Committee for Medicinal Products for Veterinary Use (CVMP);London,18 January 2006;Doc. Ref. EMEA/CVMP/ERA/ 418282/2005-CONSULTATION 59Google Scholar
  12. Figueroa-Diva, R. A., Vansudevan, D., & Mackay, A. A. (2010). Trends in soil sorption coefficients within common antimicrobial families. Chemosphere, 79, 786–793.CrossRefGoogle Scholar
  13. Gao, J., & Pedersen, J. A. (2005). Adsorption of sulfonamide antimicrobial agents to clay minerals. Environmental Science & Technology, 39, 9509–9516.CrossRefGoogle Scholar
  14. Gasser, G., Rona, M., Voloshenko, A., Shelkov, R., Tal, N., Pankratov, I., Elhanany, S., & Lev, O. (2010). Quantitative evaluation of tracers for quantification of wastewater contamination of potable water sources. Environmental Science & Technology, 44, 3919–3925.CrossRefGoogle Scholar
  15. Ge, L. K. (2009). Effects of aqueous dissolved matter on photodegradation of phenicol and fluoroquinolone antibiotics. Dalian University of Technology, 93.Google Scholar
  16. Giger, W., Alder, A. C., Golet, E. M., Kohler, H. P. E., McArdell, C. S., Molnar, E., Siegrist, H., & Suter, M. J. F. (2003). Occurrence and fate of antibiotics as trace contaminants in wastewaters, sewage sludges, and surface waters. Environmental Analytical, 57, 485–491.Google Scholar
  17. Golet, E. M., Strehler, A., Alder, A. C., & Giger, W. (2002). Determination of fluoroquinolone antibacterial agents in sewage sludge and sludge-treated soil using accelerated solvent extraction followed by solid-phase extraction. Analytical Chemistry, 74, 5455–5462.CrossRefGoogle Scholar
  18. Golet, E. M., Xifra, I., Siegrist, H., Alder, A. C., & Giger, W. (2003). Environmental exposure assessment of fluoroquinolone antibacterial agents from sewage to soil. Environmental Science & Technology, 37, 3243–3249.CrossRefGoogle Scholar
  19. Gu, C., & Karthikeyan, K. G. (2005). Sorption of the antimicrobial ciprofloxacin to aluminum and iron hydrous oxides. Environmental Science & Technology, 39, 9166–9173.CrossRefGoogle Scholar
  20. Guan, H. L., Yu, H. F., & Wang, J. N., (2012). Fate and ecological toxicity of fluoroquinolone antibiotics in soil: A review. Chinese Journal of Ecology, 31, 3228–3234.Google Scholar
  21. Hansen, P. K., Lunestad, B. T., & Samuelsen, O. (1992). Effects of oxytetracycline, oxolinic acid and flumequine on bacteria in an artificial fish farm sediment. Canadian Journal of Microbiology, 38, 1307–1312.CrossRefGoogle Scholar
  22. Hillebrand, O., Nödler, K., Geyer, T., Sauter, M. (2011). Application of caffeine as indicator for the quantification of recharging wastewater in karst systems e a case study. Geophysical Research Abstracts, 13, EGU 2011–2377.Google Scholar
  23. Huang, C. H., Renew, J. E., Smeby, K. L., Pinkston, K., & Sedlak, D. L. (2001). Assessment of potential antibiotic contaminants in water and preliminary occurrence analysis. Water Research, 120, 30–40.Google Scholar
  24. Ji, Y. F., Ferronato, C., Salvador, A., Yang, X., & Chovelon, J. M. (2014). Degradation of ciprofloxacin and sulfamethoxazole by ferrous-activated persulfate: implications for remediation of groundwater contaminated by antibiotics. Science of the Total Environment, 472, 800–808.CrossRefGoogle Scholar
  25. Jiménez-Lozano, E., Marques, I., Barron, D., Beltran, J. L., & Barbosa, J. (2002). Determination of pK(a) values of quinolones from mobility and spectroscopic data obtained by capillary electrophoresis and a diode array detector. Analytica Chimica Acta, 464, 37–45.CrossRefGoogle Scholar
  26. Jones, A. D., Bruland, G. L., Agrawal, S. G., & Vasudevan, D. (2005). Factors influencing the sorption of oxytetracycline to soils. Environmental Toxicology and Chemistry, 24, 761–770.CrossRefGoogle Scholar
  27. Karci, A., & Balcioğlu, I. A. (2009). Investigation of the tetracycline, sulfonamide, and fluoroquinolone antimicrobial compounds in animal manure and agricultural soils in Turkey. Science of the Total Environment, 407, 4652–4664.CrossRefGoogle Scholar
  28. Karthikeyan, K. G., & Meyer, M. T. (2006). Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Science of the Total Environment, 361(13), 196–207.CrossRefGoogle Scholar
  29. Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S., & Kumari, N. S. (2006). Synthesis and biological activity of Schiff and Mannich bases bearing, 4-dichloro-5-fluorophenyl moiety. Bioorganic & Medicinal Chemistry,14, 7482–7489.Google Scholar
  30. Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., & Buxton, H. T. (2002). Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999–2000: a national reconnaissance. Environmental Science & Technology, 36, 1202–1211.CrossRefGoogle Scholar
  31. Kools, S. A., Moltmann, J. F., & Knacker, T. (2008). Estimating the use of veterinary medicines in the European Union. Regulatory Toxicology and Pharmacology, 50(1), 59–65.CrossRefGoogle Scholar
  32. Kresse, H., Belsey, M., & Rovini, H. (2007). The antibacterial drugs market. Nature Reviews Drug Discovery, 6, 19–20.CrossRefGoogle Scholar
  33. Kumar, K., Gupta, S. C., Chander, Y., & Singh, A. K. (2005). Antibiotic use in agriculture and its impact on the terrestrial environment. Advances in Agronomy, 87, 1–54.CrossRefGoogle Scholar
  34. Kummerer, K. (2003). Significance of antibiotics in the environment. Journal of Antimicrobical Chemotherapy, 52(1), 5–7.CrossRefGoogle Scholar
  35. Kummerer, K. (2004). Resistance in the environment. Journal of Antimicrobical Chemotherapy, 54, 311–320.CrossRefGoogle Scholar
  36. Kümmerer, K. (2009). Antibiotics in the aquatic environment—a review—part I. Chemosphere, 75(4), 417–434.CrossRefGoogle Scholar
  37. Lapworth, D. J., Baran, N., Stuart, M. E., & Ward, R. S. (2012). Emerging organic contaminants in groundwater: a review of sources, fate and occurrence. Environmental Pollution, 163, 287–303.CrossRefGoogle Scholar
  38. Larsson, H., Tuvblad, C., Rijsdijk, F. V., Andershed, H., Grann, M., & Lichtenstein, P. (2007). A common genetic factor explains the association between psychopathic personality and antisocial behavior. Psychological Medicine, 37, 15–26.Google Scholar
  39. Lee, L. S., Carmosini, N., Sassman, S. A., Dion, H. M., & Sepulveda, M. S. (2007). Agricultural contributions of antimicrobials and hormones on soil and water quality. Advances in Agronomy, 93, 1–68.CrossRefGoogle Scholar
  40. Le-Minh, N., Khan, S. J., Drewes, J. E., & Stuetz, R. M. (2010). Fate of antibiotics during municipal water recycling treatment processes. Water Research, 44, 4295–4323.CrossRefGoogle Scholar
  41. Lev, O., Gasser, G., Rona, M., Pankratov, I. (2011). Quantitative evaluation of tracers for quantification of wastewater contamination of potable water sources. Geophysical Research Abstracts, EGU2011-5882 .Google Scholar
  42. Li, B., & Zhang, T. (2010). Biodegradation and adsorption of antibiotics in the activated sludge process. Environmental Science & Technology, 44, 3468–3473.CrossRefGoogle Scholar
  43. Lide, D. R. (1998). Properties of organic compounds. Springer: CRC Press.Google Scholar
  44. Lindberg, R., Olofsson, U., Rendahl, O., Tysklind, M., & Andersson, B. A. V. (2006). Behavior of fluoroquinolones and trimethoprim during mechanical, chemical, and active sludge treatment of sewage water and digestion of sludge. Environmental Science & Technology, 40(3), 1042–1048.CrossRefGoogle Scholar
  45. Lishman, I. (2006). Occurrence and reductions of pharmaceuticals and personal care products and estrogens by municipal wastewater treatment plants in Ontario, Canada. Science of the Total Environment, 367, 544–588.CrossRefGoogle Scholar
  46. Ma, Y. P., Li, M., Wu, M. M., Li, Z., & Liu, X. (2015). Occurrences and regional distributions of 20 antibiotics in water bodies during groundwater recharge. Science of the Total Environment, 518–519, 498–506.CrossRefGoogle Scholar
  47. Matínez-Carballo, E., Gonzúlez-Barreiro, C., Scharf, S., & Gans, O. (2007). Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environmental Pollution, 148, 570–579.CrossRefGoogle Scholar
  48. Miao, X. S., Bishay, F., Chen, M., & Metcalfe, C. D. (2004). Occurrence of antimicrobials in the final effluents of wastewater treatment plants in Canada. Environmental Science & Technology, 38(13), 3533–3541.CrossRefGoogle Scholar
  49. Nowara, A., Burhenne, J., & Spiteller, M. (1997). Binding of fluoroquinolone carboxylic acid derivatives to clay minerals. Journal of Agricultural and Food Chemistry, 45, 1459–1463.CrossRefGoogle Scholar
  50. Ostermann, A., Gao, J., Welp, G., Sciemens, J., Roelcke, M., Heimann, L., Nieder, R., Xue, Q. Y., Lin, X. Y., Sandhage-Hofmann, A., & Amelung, W. (2014). Identification of soil contamination hotspots with veterinary antibiotics using heavy metal concentrations and leaching data—a field study in China. Environmental Monitoring and Assessment, 186, 7693–7707.CrossRefGoogle Scholar
  51. Rooklidge, S. J. (2004). Environmental antimicrobial contamination from terraccumulation and diffuse pollution pathways. Science of the Total Environment, 325, 1–13.CrossRefGoogle Scholar
  52. Sarmah, A. K., Meyer, M. T., & Boxall, A. B. A. (2006). A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs). Chemosphere, 65, 725–759.CrossRefGoogle Scholar
  53. Sedlak, D. L., & Pinkston, K. E. (2001). Factors affecting the concentrations of pharmaceuticals released to the aquatic environment. Water Resources Update, 120, 56–64.Google Scholar
  54. SPARC on-line calculator. (accessed in 2004). US EPA, National Exposure Research Laboratory, Athens, GA. http://ibmlc2.chem.uga.edu/sparc/.
  55. Srivastava, P., Sanders, S. M., Dane, J. H., Feng, Y., Basile, J., & Barnett, M. O. (2009). Fate and transport of sulfadimethoxine and ormetoprim in two southeastern United States soils. Vadose Zone Journal, 8, 32–41.CrossRefGoogle Scholar
  56. Tai, Y. P., Mo, C. H., Li, Y. W., Bao, Y. P., Zhang, Y., Yao, Y., & Luo, X. D. (2009). Fluoroquinolone antibiotics detected with SPE-HPLC-MS in soil. Chinese Journal of Analytical Chemistry, 37(12), 1733–1737.Google Scholar
  57. Tai, Y. P., Mo, C. H., Li, Y. W., Wu, X. L., Zou, X., Gao, P., & Huang, X. D. (2010). Concentration and distribution of quinolone antibiotics in long-term manure-amended soils. China Environmental Science, 30(6), 813–821.Google Scholar
  58. Tai, Y. P., Mo, C. H., Wu, X. L., Li, Y. W., Wang, J. Y., Su, Q. Y., & Huang, X. P. (2011). Occurrence of quinolone antibiotics in soils from vegetable fields of Dongguan City. Acta Scientiae Circumstantiae, 31(4), 839–845.Google Scholar
  59. Takács-Novák, K., Noszál, B., Hermecz, I., Keresztúri, G., Podányi, B., & Szász, G. (1990). Protonation equilibria of quinolone antibacterials. Journal of Pharmaceutical Sciences, 79, 1023–1028.CrossRefGoogle Scholar
  60. TCEQ. (Retrieved 2013). Texas commission on environmental quality. TCEQ.Google Scholar
  61. The ministry of agriculture animal husbandry and veterinary. (2006). Industry ministry of highest veterinary drug residues in animal food limited. Chinese Journal of Veterinary Drug, 37(2), 7–9.Google Scholar
  62. Tolls, J. (2001). Sorption of veterinary pharmaceuticals in soils: a review. Environmental Science & Technology, 35, 3397–3406.CrossRefGoogle Scholar
  63. Tong, L., Li, P., Wang, Y. X., & Zhu, K. Z. (2009). Analysis of veterinary antibiotic residues in swine wastewater and environmental water samples using optimized SPE-LC/MS/MS. Chemosphere, 74, 1090–1097.CrossRefGoogle Scholar
  64. Unold, M., Šimŭnek, J., Kasteel, R., Groeneweg, J., & Vereecken, H. (2009). Transport of manure-based applied sulfadiazine and its main transformation products in soil columns. Vadose Zone Journal, 8, 677–689.CrossRefGoogle Scholar
  65. U.S. Environmental Protection Agency (2010). Waste and cleanup risk assessment glossary: U.S. Environmental Protection Agency.Google Scholar
  66. Vasudevan, D., Bruland, G. L., Torrance, B. S., Upchurch, V. G., & MacKay, A. A. (2009). PH-dependent ciprofloxacin sorption to soils: interaction mechanisms and soil factors influencing sorption. Geoderma, 151, 68–76.CrossRefGoogle Scholar
  67. Vazquez, J., Belmont, A. S., & Sedat, J. W. (2001). Multiple regimes of constrained chromosome motion are regulated in the interphase Drosophila nucleus. Current Biology, 11(16), 1227–1239.CrossRefGoogle Scholar
  68. Vieno, N. (2007). Elimination of pharmaceuticals in sewage treatment plants in Finland. Water Research, 41, 1001–1012.CrossRefGoogle Scholar
  69. WHO (World Health Organization) (2001). Monitoring antimicrobial usage in food animals for the protection of human health, available at: http://whqlibdoc.who.int/hq/2002/WHO CDS CSR EPH 2002.11.pdf. Accessed 28 May 2012.
  70. Xu, W. H., Zhang, G., Zou, S. C., Li, X. D., & Liu, Y. C. (2006). Occurrence and seasonal changes of antibiotics in the Victoria Harbor and the Pearl River, South China. Environmental Science, 27(12), 2458–2462.Google Scholar
  71. Zhang, J. Q., & Dong, Y. H. (2008). Effect of low-molecular-weight organic acids on the adsorption of norfloxacin in typical variable charge soils of China. Journal of Hazardous Materials, 151, 833–839.CrossRefGoogle Scholar
  72. Zhang, H., & Huang, C. H. (2007). Adsorption and oxidation of fluoroquinolone antibacterial agents and structurally related amines with goethite. Chemosphere, 66, 1502–1512.CrossRefGoogle Scholar
  73. Zhang, X., Xiang, L., Mo, C. H., Li, Y. W., Cai, Q. Y., Huang, X. P., Wu, X. L., & Li, H., (2014). Migration behavior and influence factors of quinolone antibiotics in soil. Journal of Agro-Environment Science, 33, 1345–1350.Google Scholar
  74. Zhu, Y., Johnson, T. A., Su, J., Qiao, M., Guo, G., Steadtfeld, R. D., Hashsham, S. A., & Tiedje, J. M. (2013). Diverse and abundant antibiotic resistant genes in Chinese swine farms. Proceedings of the National Academy of Sciences, 110, 3435–3440.CrossRefGoogle Scholar
  75. Zorita, S., Martensson, L., & Mathiasson, L. (2009). Occurrence and removal of pharmaceuticals in a municipal sewage treatment system in the south of Sweden. Science of the Total Environment, 407(8), 2760–2770.CrossRefGoogle Scholar
  76. Zuccato, E., Castiglioni, S., & Fanelli, R. (2005). Identification of the pharmaceuticals for human use contaminating the Italian aquatic environment. Journal of Hazardous Materials, 122(3), 205–209.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.School of EnvironmentTsinghua UniversityBeijingChina

Personalised recommendations