Hydrologic and Biogeochemical Drivers of Riparian Denitrification in an Agricultural Watershed

  • Lauren E. McPhillips
  • Peter M. Groffman
  • Christine L. Goodale
  • M. Todd Walter
Article

Abstract

This study investigated drivers of denitrification and overall NO3 removal in an agricultural riparian area in central New York. Denitrification was measured using an in situ “push-pull” method with 15N–NO3 as a tracer during summer and fall 2011 at a pair of riparian sites characterized by different hydrologic regimes. Median denitrification rates were 1347 and 703 μg N kg soil−1 day−1 for the two study sites. These rates are higher than those reported for other riparian areas, emphasizing the role of some riparian areas as hotspots of NO3 removal. N2O production was significantly higher at one site, demonstrating that riparian areas can be a greenhouse gas source under certain conditions. Denitrification was negatively correlated with groundwater flux, suggesting that slower flushing of water, and thus longer residence time, promotes denitrification. A mass balance of NO3 loss revealed that denitrification only accounted for 5–12 % of total NO3 loss, and production of NH4+ indicated that dissimilatory NO3 reduction to NH4+ (DNRA) may be occurring at both sites. While both sites were characterized by high NO3 removal, differences in denitrification rates and NO3 removal processes demonstrate the need to improve our ability to capture spatial and process heterogeneity in landscape biogeochemical models.

Keywords

Denitrification DNRA Water quality Nitrogen cycling Riparian systems Ecohydrology Riparian groundwater 

References

  1. Addy, K., Kellogg, D. Q., Gold, A. J., Groffman, P. M., Ferendo, G., & Sawyer, C. (2002). In situ push-pull method to determine ground water denitrification in riparian zones. Journal of Environmental Quality, 31, 1017–1024.CrossRefGoogle Scholar
  2. Alexander, R. B., Smith, R. A., & Schwarz, G. E. (2000). Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico. Nature, 403, 758–761.CrossRefGoogle Scholar
  3. Anderson, T. R., Groffman, P. M., Kaushal, S. S., & Walter, M. T. (2014). Shallow groundwater denitrification in riparian zones of a headwater agricultural landscape. Journal of Environmental Quality, 43, 732–744. doi:10.2134/jeq2013.07.0303.CrossRefGoogle Scholar
  4. Bakken, L. R., Bergaust, L., Liu, B., & Frostegard, A. (2012). Regulation of denitrification at the cellular level: a clue to the understanding of N2O emissions from soils. Philosophical Transactions of the Royal Society-B, 367, 1226–1234. doi:10.1098/rstb.2011.0321.CrossRefGoogle Scholar
  5. Berntson, G. M., & Aber, J. D. (2000). Fast nitrate immobilization in N saturated temperate forest soils. Soil Biology and Biochemistry, 32, 151–156.CrossRefGoogle Scholar
  6. Bouwer, H. (1989). The Bouwer and rice slug test: an update. Ground Water, 27, 304–309.CrossRefGoogle Scholar
  7. Boyer, E. W., Goodale, C. L., Jaworsk, N. A., & Howarth, R. W. (2002). Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern USA. Biogeochemistry, 57(1), 137–169.CrossRefGoogle Scholar
  8. Burgin, A. J., & Groffman, P. M. (2012). Soil O2 controls denitrification rates and N2O yield in a riparian wetland. Journal of Geophysical Research, Biogeosciences, 117, G01010. doi:10.1029/2011JG001799.Google Scholar
  9. Burgin, A. J., & Hamilton, S. K. (2007). Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Frontiers in Ecology and the Environment, 5(2), 89–96.CrossRefGoogle Scholar
  10. Burgin, A. J., & Hamilton, S. K. (2008). NO3 -driven SO4 2− production in freshwater ecosystems: implications for N and S cycling. Ecosystems, 11, 908–922. doi:10.1007/s10021-008-9169-5.CrossRefGoogle Scholar
  11. Burgin, A. J., Lazar, J. G., Groffman, P. M., Gold, A. J., & Kellogg, D. Q. (2013). Balancing nitrogen retention ecosystem services and greenhouse gas disservices at the landscape scale. Ecological Engineering, 56, 26–35.CrossRefGoogle Scholar
  12. Chen, X. X., & Driscoll, C. T. (2009). Watershed land use controls on chemical inputs to Lake Ontario embayments. Journal of Environmental Quality, 38(5), 2084–2095. doi:10.2134/jeq2007.0435.CrossRefGoogle Scholar
  13. Cornell University Agricultural Experiment Station (CUAES) (2013). ‘Homer C. Thompson Vegetable Farm.’ http://cuaes.cornell.edu/ag-operations/freeville-farm/ Accessed 11 March 2013.
  14. Davidson, E. A., & Firestone, M. K. (1988). Measurement of nitrous oxide dissolved in soil solution. Soil Science Society of America Journal, 52, 1201–1203.CrossRefGoogle Scholar
  15. Davidson, E. A., Chorover, J., & Dail, D. B. (2003). A mechanism of abiotic immobilization of nitrate in forest ecosystems: the ferrous wheel hypothesis. Global Change Biology, 9, 228–236.CrossRefGoogle Scholar
  16. Davis, J. H., Griffith, S. M., Horwath, W. R., Steiner, J. J., & Myrold, D. D. (2008). Denitrification and nitrate consumption in an herbaceous riparian area and perennial ryegrass seed cropping system. Soil Science Society of America Journal, 72, 1299–1310.CrossRefGoogle Scholar
  17. Dhondt, K., Boeckx, P., Van Cleemput, O., & Hofman, G. (2003). Quantifying nitrate retention processes in a riparian buffer zone using the natural abundance of 15N in NO3 . Rapid Communications in Mass Spectrometry, 17, 2597–2604.CrossRefGoogle Scholar
  18. Dubrovsky, N. M., Burow, K. R., Clark, G. M., Gronberg, J. M., Hamilton, P. A., Hitt, K. J., et al. (2010). The quality of our nation’s water: nutrients in the nation’s streams and groundwater, 1992–2004. US Geological Survey Circular, 1350, 174.Google Scholar
  19. Firestone, M. K., Firestone, R. B., & Tiedje, J. M. (1980). Nitrous oxide from soil denitrification: factors controlling its biological production. Science, 208(4445), 749–751.CrossRefGoogle Scholar
  20. Fitzhugh, R. D., Lovett, G. M., & Venterea, R. T. (2003). Biotic and abiotic immobilization of ammonium, nitrite, and nitrate in soils developed under different tree species in the Catskill Mountains, New York, USA. Global Change Biology, 9, 1–11.CrossRefGoogle Scholar
  21. Flewelling, S. A., Herman, J. S., Hornberger, G. M., & Mills, A. L. (2012). Travel time controls the magnitude of nitrate discharge in groundwater bypassing the riparian zone to a stream on Virginia’s coastal plain. Hydrological Processes, 26, 1242–1253. doi:10.1002/hyp.8219.CrossRefGoogle Scholar
  22. Groffman, P. M., Gold, A. J., & Addy, K. (2000). Nitrous oxide production in riparian zones and its importance to national emission inventories. Chemosphere-Global Change Science, 2, 291–299.CrossRefGoogle Scholar
  23. Groffman, P. M., Altabet, M. A., Bohlke, J. K., Butterbach-Bahl, K., David, M. B., Firestone, M. K., et al. (2006). Methods for measuring denitrification: diverse approaches to a difficult problem. Ecological Applications, 16, 2091–2122.CrossRefGoogle Scholar
  24. Groffman, P. M., Butterbach-Bahl, K., Fulweiler, R. W., Gold, A. J., Morse, J. L., Stander, E. K., et al. (2009). Challenges to incorporating spatially and temporally explicit phenomena (hotspots and hot moments) in denitrification models. Biogeochemistry, 93, 49–77. doi:10.1007/s10533-008-9277-5.CrossRefGoogle Scholar
  25. Gu, C., Hornberger, G. M., Mills, A. L., Herman, J. S., & Flewelling, S. A. (2007). Nitrate reduction in streambed sediments: effects of flow and biogeochemical kinetics. Water Resources Research, 43, W12413. doi:10.1029/2007WR006027.CrossRefGoogle Scholar
  26. Gu, C., Hornberger, G. M., Sherman, J. S., & Mills, A. L. (2008). Influence of stream-groundwater interactions in the streambed sediments on NO3 flux to a low-relief coastal stream. Water Resources Research, 44, W11432. doi:10.1029/2007WR006739.Google Scholar
  27. Harrison, M. D., Groffman, P. M., Mayer, P. M., Kaushal, S. S., & Newcomer, T. A. (2011). Denitrification in alluvial wetlands in an urban landscape. Journal of Environmental Quality, 40, 634–646. doi:10.2134/jeq2010.0335.CrossRefGoogle Scholar
  28. Hedin, L. O., von Fischer, J. C., Ostrom, N. E., Kennedy, B. P., Brown, M. G., & Robertson, G. P. (1998). Thermodynamic constraints on nitrogen transformations and other biogeochemical processes at soil-stream interfaces. Ecology, 79(2), 684–703.Google Scholar
  29. Heinen, M. (2006). Simplified denitrification models: overview and properties. Geoderma, 133, 444–463.CrossRefGoogle Scholar
  30. Hill, A. R. (1996). Nitrate removal in stream riparian zones. Journal of Environmental Quality, 25, 743–755.CrossRefGoogle Scholar
  31. Hill, A. R., Devito, K. J., Campagnolo, S., & Sanmugadas, K. (2000). Subsurface denitrification in a forest riparian zone: interactions between hydrology and supplies of nitrate and organic carbon. Biogeochemistry, 51, 193–223.CrossRefGoogle Scholar
  32. Howarth, R. W., Billen, G., Swaney, D., Townsend, A., Jaworski, N., Lajtha, K., et al. (1996). Regional nitrogen budgets and riverine N and P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry, 35, 75–139.CrossRefGoogle Scholar
  33. Howarth, R. W., Sharpley, A., & Walker, D. (2002). Sources of nutrient pollution to coastal waters in the United States: implications for achieving coastal water quality goals. Estuaries, 25(4B), 656–676.CrossRefGoogle Scholar
  34. Istok, J. D., Humphrey, M. D., Schroth, M. H., Hyman, M. R., & O’Reilly, K. T. (1997). Single-well, “push-pull” test for in situ determination of microbial activities. Ground Water, 35, 619–631.CrossRefGoogle Scholar
  35. Jahangir, M. M. R., Johnston, P., Addy, K., Khalil, M. I., Groffman, P. M., & Richards, K. G. (2013). Quantification of in situ denitrification rates in groundwater below and arable and a grassland system. Water, Air, and Soil Pollution, 224, 1693.CrossRefGoogle Scholar
  36. Jencso, K. G., McGlynn, B. L., Gooseff, M. N., Bencala, K. E., & Wondzell, S. M. (2010). Hillslope hydrologic connectivity controls riparian groundwater turnover: implications of catchment structure for riparian buffering and stream water sources. Water Resources Research, 46, W10524. doi:10.1029/2009WR008818.CrossRefGoogle Scholar
  37. Johnson, M. S., Woodbury, P. B., Pell, A. N., & Lehmann, J. (2007). Land-use change and stream water fluxes: decadal dynamics in watershed nitrate exports. Ecosystems, 10, 1182–1196. doi:10.1007/s10021-007-9091-2.CrossRefGoogle Scholar
  38. Kaushal, S. S., Groffman, P. M., Mayer, P. M., Striz, E., & Gold, A. J. (2008). Effects of stream restoration on denitrification in an urbanizing watershed. Ecological Applications, 18(3), 789–804.CrossRefGoogle Scholar
  39. Kellogg, D. Q., Gold, A. J., Groffman, P. M., Addy, K., Stolt, M. H., & Blazejewski, G. (2005). In situ ground water denitrification in stratified, permeable soils underlying riparian wetlands. Journal of Environmental Quality, 34, 524–533.CrossRefGoogle Scholar
  40. Kellogg, D. Q., Gold, A. J., Cox, S., Addy, K., & August, P. V. (2010). A geospatial approach for assessing denitrification sinks within lower-order catchments. Ecological Engineering, 36(11), 1596–1606. doi:10.1016/j.ecoleng.2010.02.006.CrossRefGoogle Scholar
  41. King, R. S., Baker, M. E., Whigham, D. F., Weller, D. E., Jordan, T. E., Kazyak, P. F., et al. (2005). Spatial considerations for linking watershed land cover to ecological indicators in streams. Ecological Applications, 15(1), 137–153.CrossRefGoogle Scholar
  42. Livingstone, M. W., Smith, R. V., & Laughlin, R. J. (2000). A spatial study of denitrification potential of sediments in Belfast and Strangford Loughs and its significance. Science of the Total Environment, 251(252), 369–380.CrossRefGoogle Scholar
  43. Lowrance, R. (1992). Groundwater nitrate and denitrification in a coastal plain riparian forest. Journal of Environmental Quality, 21, 401–405.CrossRefGoogle Scholar
  44. Matheson, F. E., Nguyen, M. L., Cooper, A. B., Burt, T. P., & Bull, D. C. (2002). Fate of 15N-nitrate in unplanted, planted and harvested riparian wetland soil microcosms. Ecological Engineering, 19, 249–264.CrossRefGoogle Scholar
  45. McClain, M. E., Boyer, E., Dent, C. L., Gergel, S. E., Grimm, N. B., Groffman, P. M., et al. (2003). Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems, 6(4), 301–312.CrossRefGoogle Scholar
  46. McGlynn, B. L., & McDonnell, J. J. (2003). Role of discrete landscape units in controlling catchment dissolved organic carbon dynamics. Water Resources Research, 39, 1090. doi:10.1029/2002WR001525.Google Scholar
  47. Mosier, A. R., & Klemedtsson, L. (1994). Measuring denitrification in the field. In R. W. Weaver et al. (Eds.), Methods of soil analysis, part 2: microbiological and biochemical properties (2nd ed.). Madison: SSSA.Google Scholar
  48. National Resource Conservation Service (NRCS). (2013). Web Soil Survey. http://websoilsurvey.nrcs.usda.gov/app/HomePage.htm Accessed 11 March 2013.
  49. Noe, G. B., Hupp, C. R., & Rybicki, N. B. (2013). Hydrogeomorphology influences soil nitrogen and phosphorus mineralization in floodplain wetlands. Ecosystems, 16(1), 75–94. doi:10.1007/s10021-012-9597-0.CrossRefGoogle Scholar
  50. Northeast Regional Climate Center (NRCC) (2013), The Ithaca Climate Page, http://www.nrcc.cornell.edu/climate/ithaca/, Accessed 11 March 2013.
  51. O’Brien, J. M., Hamilton, S. K., Podzikowski, L., & Ostrom, N. (2012). The fate of assimilated nitrogen in streams: an in situ benthic chamber study. Freshwater Biology, 57(6), 1113–1125. doi:10.1111/j.1365-2427.2012.02770.x.CrossRefGoogle Scholar
  52. Ocampo, C. J., Oldham, C. E., & Sivapalan, M. (2006). Nitrate attenuation in agricultural catchments: shifting balances between transport and reaction. Water Resources Research, 42, W01408. doi:10.1029/2004WR003773.CrossRefGoogle Scholar
  53. Pattinson, S. N., Garcia-Ruiz, R., & Whitton, B. A. (1998). Spatial and seasonal variation in denitrification in the Swale-Ouse system, a river continuum. Science of the Total Environment, 210(211), 289–305.CrossRefGoogle Scholar
  54. Ranalli, A. J., & Macalady, D. L. (2010). The importance of the riparian zone and in-stream processes in nitrate attenuation in undisturbed and agricultural watersheds—a review of the scientific literature. Journal of Hydrology, 389, 406–415.CrossRefGoogle Scholar
  55. Robertson, G. P., Sollins, P., Ellis, B. G., & Lajtha, K. (1999). Exchangeable ions, pH and cation exchange capacity. In G. P. Robertson et al. (Eds.), Standard soil methods for long-term ecological research. New York: Oxford University Press.Google Scholar
  56. Rutting, T., Boeckx, P., Muller, C., & Klemedtsson, L. (2011). Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences, 8, 1779–1791.CrossRefGoogle Scholar
  57. Santisteban, J. I., Mediavilla, R., Lopez-Pamo, E., Dabrio, C. J., Ruiz Zapata, M. B., Gil Garcıa, M. J., et al. (2004). Loss on ignition: a qualitative or quantitative method for organic matter and carbonate mineral content in sediments? Journal of Paleolimnology, 32, 287–299.CrossRefGoogle Scholar
  58. Schlesinger, W. H. (2009). On the fate of anthropogenic nitrogen. Proceedings of the National Academy of Sciences, 106(1), 203–208.CrossRefGoogle Scholar
  59. Tague, C. (2009). Modeling hydrologic controls on denitrification: sensitivity to parameter uncertainty and landscape representation. Biogeochemistry, 93, 79–90.CrossRefGoogle Scholar
  60. Tiedje, J. M. (1994). Denitrifiers. In R. W. Weaver et al. (Eds.), Methods of soil analysis, part 2: microbiological and biochemical properties (2nd ed.). Madison: SSSA.Google Scholar
  61. Townsend, A.R., Martinelli, L.A., & Howarth, R.W. (2009). The global nitrogen cycle, biodiversity, and human health. In: Biodiversity change and human health: from ecosystem services to spread of disease. SCOPE, Paris, France.Google Scholar
  62. Triska, F. J., Duff, J. H., Sheibley, R. W., Jackman, A. P., & Avanzino, R. J. (2007). DIN retention-transport through four hydrologically connected zones in a headwater catchment of the Upper Mississippi River. Journal of the American Water Resources Association, 43(1), 60–71.CrossRefGoogle Scholar
  63. Turner, R. E., & Rabalais, N. N. (1994). Coastal eutrophication near the Mississippi River delta. Nature, 368, 619–621.CrossRefGoogle Scholar
  64. United States Environmental Protection Agency (US EPA) (1990). National pesticide survey: nitrate. Office of Water, Office of Pesticides and Toxic Substances. Washington, D.C.Google Scholar
  65. United States Environmental Protection Agency (US EPA) (2005). Riparian buffer width, vegetative cover, and nitrogen removal effectiveness: a review of current science and regulations. EPA/600/R-05/118, Office of Research and Development, Washington DC.Google Scholar
  66. van Breemen, N., Boyer, E. W., Goodale, C. L., Jaworski, N. A., Paustian, K., Seitzinger, S. P., et al. (2002). Where did all the nitrogen go? Fate of nitrogen inputs to large watersheds in the northeastern U.S.A. Biogeochemistry, 57(58), 267–293.CrossRefGoogle Scholar
  67. Vidon, P., & Hill, A. R. (2004). Denitrification and eight patterns of electron donors and acceptors in eight riparian zones with contrasting hydrogeology. Biogeochemistry, 71, 259–283.CrossRefGoogle Scholar
  68. Vidon, P., Allan, C., Burns, D., Duval, T. P., Gurwick, N., Inamdar, S., et al. (2010). Hot spots and hot moments in riparian zones: potential for improved water quality management. Journal of the American Water Resources Association, 46(2), 278–298.CrossRefGoogle Scholar
  69. Viollier, E., Inglett, P. W., Hunter, K., Roychoudhury, A. N., & Van Cappellen, P. (2000). The ferrozine method revisited: Fe(II)/Fe(III) determination in natural waters. Applied Geochemistry, 15(2000), 785–790.CrossRefGoogle Scholar
  70. Zaman, M., Nguyen, M. L., Gold, A. J., Groffman, P. M., Kellogg, D. Q., & Wilcock, R. J. (2008). Nitrous oxide generation, denitrification, and nitrate removal in a seepage wetland intercepting surface and subsurface flows from a grazed dairy catchment. Australian Journal of Soil Research, 46, 565–577.CrossRefGoogle Scholar
  71. Zarnetske, J. P., Haggerty, R., Wondzell, S. M., & Baker, M. (2011). Dynamics of nitrate production and removal as a function of residence time in the hyporheic zone. Journal of Geophysical Research, Biogeosciences, 116, G01025. doi:10.1029/2010JG001356.Google Scholar
  72. Zarnetske, J. P., Haggerty, R., Wondzell, S. M., Bokil, V. A., & González-Pinzón, R. (2012). Coupled transport and reaction kinetics control the nitrate source-sink function of hyporheic zones. Water Resources Research, 48, W11508. doi:10.1029/2012WR011894.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Lauren E. McPhillips
    • 1
    • 4
  • Peter M. Groffman
    • 2
  • Christine L. Goodale
    • 3
  • M. Todd Walter
    • 1
  1. 1.Department of Biological and Environmental EngineeringCornell UniversityIthacaUSA
  2. 2.Cary Institute of Ecosystem StudiesMillbrookUSA
  3. 3.Department of Ecology and Evolutionary BiologyCornell UniversityIthacaUSA
  4. 4.Riley-Robb HallCornell UniversityIthacaUSA

Personalised recommendations