Certain Phase I and II Enzymes as Toxicity Biomarker: An Overview

  • Iftekhar Hassan
  • Nasimudeen R. Jabir
  • Saheem Ahmad
  • Aaliya Shah
  • Shams Tabrez
Article

Abstract

Tremendous surge in the industrialization and infrastructure development worldwide have led to a significant rise in environmental pollutants in the last 2–3 decades. Pollutants in the natural environment consist of highly diversified and complex mixtures. A single biomarker cannot be used to assess a complete identification of environmental pollutants. In this context, it is highly recommended by environmental scientists to evaluate a set of complementary biomarkers for the complete assessment of toxic burden of complex environmental pollutants in the exposed organisms. Moreover, a multiple biomarker approach for the stress assessment is believed to have high sensitivity and could be done in comparatively lesser measuring time. The present article focuses on the viability of usage of xenobiotic detoxification enzymes viz. phase I and II as the toxicity biomarkers. As far as our knowledge goes, we are for the first time reporting phase I and phase II enzymes together as potential toxicity biomarkers in a single article.

Keywords

Environmental pollution Biomarkers Enzymes Antioxidant enzymes CYP450 

Notes

Acknowledgments

This work was supported by the NSTIP strategic technologies program in the Kingdom of Saudi Arabia—Project No. (11-BIO-2020-03). The authors also acknowledge with thanks Science and Technology Unit, King Abdulaziz University for technical support.

References

  1. Adams, S. M., Greeley, M. S., Law, J. M., Noga, E. J., & Zelikoff, J. T. (2003). Application of multiple sublethal stress indicators to assess the health of fish in Pamlico Sound following extensive flooding. Estuaries, 26(5), 1365–1382. doi:10.1007/bf02803638.CrossRefGoogle Scholar
  2. Ahmad, I., Hamid, T., Fatima, M., Chand, H. S., Jain, S. K., Athar, M., et al. (2000). Induction of hepatic antioxidants in freshwater catfish (Channa punctatus Bloch) is a biomarker of paper mill effluent exposure. Biochimica Et Biophysica Acta, 1523(1), 37–48.CrossRefGoogle Scholar
  3. Almeida, E. A., Bainy, A. C. D., Dafre, A. L., Gomes, O. F., Medeiros, M. H. G., & Mascio, P. D. (2005). Oxidative stress in digestive gland and gill of the brown mussel (Perna perna) exposed to air and re-submersed. Journal of Experimental Marine Biology and Ecology, 318(1), 21–30. doi:10.1016/j.jembe.2004.12.007.CrossRefGoogle Scholar
  4. Altenburger, R., Walter, H., & Grote, M. (2004). What contributes to the combined effect of a complex mixture? Environmental Science & Technology, 38(23), 6353–6362. doi:10.1021/es049528k.CrossRefGoogle Scholar
  5. Attia, T. Z., Yamashita, T., Hammad, M. A., Hayasaki, A., Sato, T., Miyamoto, M., et al. (2014). Effect of cytochrome P450 2C19 and 2C9 amino acid residues 72 and 241 on metabolism of tricyclic antidepressant drugs. Chemical & Pharmaceutical Bulletin, 62(2), 176–181.CrossRefGoogle Scholar
  6. Avci, A., Kaçmaz, M., & Durak, I. (2005). Peroxidation in muscle and liver tissues from fish in a contaminated river due to a petroleum refinery industry. Ecotoxicology and Environmental Safety, 60(1), 101–105. doi:10.1016/j.ecoenv.2003.10.003.CrossRefGoogle Scholar
  7. Barata, C., Lekumberri, I., Vila-Escalé, M., Prat, N., & Porte, C. (2005). Trace metal concentration, antioxidant enzyme activities and susceptibility to oxidative stress in the tricoptera larvae hydropsyche exocellata from the llobregat river basin (NE Spain). Aquatic Toxicology (Amsterdam, Netherlands), 74(1), 3–19. doi:10.1016/j.aquatox.2005.04.002.CrossRefGoogle Scholar
  8. Broeg, K., & Lehtonen, K. K. (2006). Indicesfortheassessmentofenvironmentalpollution of the Baltic Sea coasts: integrated assessment of a multi-biomarker approach. Marine Pollution Bulletin, 53, 508–522.CrossRefGoogle Scholar
  9. Cazenave, J., Bacchetta, C., Parma, M. J., Scarabotti, P. A., & Wunderlin, D. A. (2009). Multiple biomarkers responses in Prochilodus lineatus allowed assessing changes in the water quality of Salado River basin (Santa Fe, Argentina). Environmental Pollution (Barking, Essex: 1987), 157(11), 3025–3033. doi:10.1016/j.envpol.2009.05.055.CrossRefGoogle Scholar
  10. Connon, R. E., Geist, J., & Werner, I. (2012). Effect-based tools for monitoring and predicting the ecotoxicological effects of chemicals in the aquatic environment. Sensors (Basel, Switzerland), 12(9), 12741–12771. doi:10.3390/s120912741.CrossRefGoogle Scholar
  11. Cosson, R. P., & Amiard, J. C. (2000). Use of metallothioneins as biomarkers of exposure to metals. In L. Lagadic, T. Caquet, J. C. Amiard, & F. Ramade (Eds.), Use of biomarkers for environmental quality assessment (pp. 79–111). Plymouth: Scientific Publs.Google Scholar
  12. de Maagd, P. G.-J. (2000). Bioaccumulation tests applied in whole effluent assessment: a review. Environmental Toxicology and Chemistry, 19(1), 25–35. doi:10.1002/etc.5620190104.CrossRefGoogle Scholar
  13. Dyer, N. W., Krogh, D. F., DeVold, R., Wilson, S. L., & White, D. G. (2000). Chromobacteriosis in a Chinese red panda (Ailurus fulgens styani). Journal of Veterinary Diagnostic Investigation: Official Publication of the American Association of Veterinary Laboratory Diagnosticians, Inc, 12(2), 177–179.CrossRefGoogle Scholar
  14. Eason, C., & O’Halloran, K. (2002). Biomarkers in toxicology versus ecological risk assessment. Toxicology, 181–182, 517–521.CrossRefGoogle Scholar
  15. Farías, L., Fernández, C., Faúndez, J., Cornejo, M., & Alcaman, M. E. (2009). Chemolithoautotrophic production mediating the cycling of the greenhouse gases N2O and CH4 in an upwelling ecosystem. Biogeosciences, 6(12), 3053–3069. doi:10.5194/bg-6-3053-2009.CrossRefGoogle Scholar
  16. Fatima, R. A., & Ahmad, M. (2005). Certain antioxidant enzymes of Allium cepa as biomarkers for the detection of toxic heavy metals in wastewater. Science of the Total Environment, 346(1–3), 256–273. doi:10.1016/j.scitotenv.2004.12.004.CrossRefGoogle Scholar
  17. Fatima, R. A., & Ahmad, M. (2006). Allium cepa derived EROD as a potential biomarker for the presence of certain pesticides in water. Chemosphere, 62(4), 527–537. doi:10.1016/j.chemosphere.2005.06.032.CrossRefGoogle Scholar
  18. Faust, M., Altenburger, R., Backhaus, T., Blanck, H., Boedeker, W., Gramatica, P., et al. (2001). Predicting the joint algal toxicity of multi-component s-triazine mixtures at low-effect concentrations of individual toxicants. Aquatic Toxicology (Amsterdam, Netherlands), 56(1), 13–32.CrossRefGoogle Scholar
  19. Flammarion, P., Devaux, A., Nehls, S., Migeon, B., Noury, P., & Garric, J. (2002). Multibiomarker responses in fish from the Moselle river (France). Ecotoxicology and Environmental Safety, 51(2), 145–153. doi:10.1006/eesa.2001.2134.CrossRefGoogle Scholar
  20. Hahn, M. E., & Chandran, K. (1996). Uroporphyrin accumulation associated with cytochrome P4501A induction in fish hepatoma cells exposed to aryl hydrocarbon receptor agonists, including 2,3,7,8-tetrachlorodibenzo-p-dioxin and planar chlorobiphenyls. Archives of Biochemistry and Biophysics, 329(2), 163–174. doi:10.1006/abbi.1996.0205.CrossRefGoogle Scholar
  21. Hassan, I., Chibber, S., & Naseem, I. (2010). Ameliorative effect of riboflavin on the cisplatin induced nephrotoxicity and hepatotoxicity under photoillumination. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 48(8–9), 2052–2058. doi:10.1016/j.fct.2010.05.004.CrossRefGoogle Scholar
  22. Hassan, I., Chibber, S., & Naseem, I. (2013). Vitamin B2: a promising adjuvant in cisplatin based chemoradiotherapy by cellular redox management. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 59, 715–723. doi:10.1016/j.fct.2013.07.018.CrossRefGoogle Scholar
  23. Hossain, M. A., Piyatida, P., da Silva, J. A. T., & Fujita, M. (2012). Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. Journal of Botany. doi:10.1155/2012/872875.Google Scholar
  24. Khan, M. S., Tabrez, S., Priyadarshini, M., Priyamvada, S., & Khan, M. M. (2012). Targeting Parkinson’s—tyrosine hydroxylase and oxidative stress as points of interventions. CNS & Neurological Disorders: Drug Targets, 11(4), 369–380.CrossRefGoogle Scholar
  25. Kopecka-Pilarczyk, J., & Correia, A. D. (2009). Biochemical response in gilthead seabream (Sparus aurata) to in vivo exposure to a mix of selected PAHs. Ecotoxicology and Environmental Safety, 72(4), 1296–1302. doi:10.1016/j.ecoenv.2008.12.003.CrossRefGoogle Scholar
  26. Lagadic, L., Caquet, T., Amiard, J. C., & Ramade, F. (Eds.). (2000). Use of biomarkers in monitoring environmental health. Balkema, Rotterdam, The Netherlands: Science Publishers, Inc., Enfield.Google Scholar
  27. Lardone M. C., Castillo P., Valdevenito R., Ebensperger M., Ronco A. M., Pommer R., Piottante A., et al. (2010). P450-aromatase activity and expression in human testicular tissues with severe spermatogenic failure. International Journal of Andrology, 33(4):650--60.Google Scholar
  28. Linde-Arias, A. R., Inácio, A. F., Novo, L. A., de Alburquerque, C., & Moreira, J. C. (2008). Multibiomarker approach in fish to assess the impact of pollution in a large Brazilian river, Paraiba do Sul. Environmental Pollution (Barking, Essex: 1987), 156(3), 974–979. doi:10.1016/j.envpol.2008.05.006.CrossRefGoogle Scholar
  29. Lozano, P., Trombini, C., Crespo, E., Blasco, J., & Moreno-Garrido, I. (2014). ROI-scavenging enzyme activities as toxicity biomarkers in three species of marine microalgae exposed to model contaminants (copper, Irgarol and atrazine). Ecotoxicology and Environmental Safety, 104, 294–301.CrossRefGoogle Scholar
  30. Lynch, J. M., Wiseman, A., & De Leij, F. A. A. M. (2001). Ecotoxicology. In S. A. Levin (Ed.), Encyclopedia of biodiversity (pp. 363–373). San Diego: Academic.CrossRefGoogle Scholar
  31. Mahmood, K., Jadoon, S., Mahmood, Q., Irshad, M., & Hussain, J. (2014). Synergistic effects of toxic elements on heat shock proteins. BioMed Research International. doi:10.1155/2014/564136.Google Scholar
  32. Markert, B. A., Breure, A. M., & Zechmeister, H. G. (2003). Bioindicators & Biomonitors: Principles, Concepts, and Applications.: Elsevier.Google Scholar
  33. Moore, M. N., & Simpson, M. G. (1992). Molecular and cellular pathology in environmental impact assessment. Aquatic Toxicology, 22, 313–322.CrossRefGoogle Scholar
  34. Moore, M. N., Depledge, M. H., Readman, J. W., & Paul Leonard, D. R. (2004). An integrated biomarker-based strategy for ecotoxicological evaluation of risk in environmental management. Mutation Research, 552(1–2), 247–268. doi:10.1016/j.mrfmmm.2004.06.028.CrossRefGoogle Scholar
  35. Naseem, I., Hassan, I., Alhazza, I. M., & Chibber, S. (2015). Protective effect of riboflavin on cisplatin induced toxicities: a gender-dependent study. Journal of Trace Elements in Medicine and Biology: Organ of the Society for Minerals and Trace Elements (GMS), 29, 303–314. doi:10.1016/j.jtemb.2014.08.003.CrossRefGoogle Scholar
  36. Onwurah, I. N. E., Ogugua, V. N., Onyike, N. B., Ochonogor, A. E., & Otitoju, O. F. (2007). Crude oil spills in the environment, effects and some innovative clean-up biotechnologies. International Journal of Environmental Research, 1(4), 307–320.Google Scholar
  37. Pandey, S., Parvez, S., Sayeed, I., Haque, R., Bin-Hafeez, B., & Raisuddin, S. (2003). iomarkers of oxidative stress: a comparative study of river Yamuna fish Wallago attu (Bl. & Schn.). The Science of the Total Environment, 309(1–3), 105–115. doi:10.1016/s0048-9697(03)00006-8.CrossRefGoogle Scholar
  38. Richardson, D. L., Seamon, L. G., Carlson, M. J., O’Malley, D. M., Fowler, J. M., Copeland, L. J., et al. (2008). CA125 decline in ovarian cancer patients treated with intravenous versus intraperitoneal platinum-based chemotherapy. Gynecologic Oncology, 111(2), 233–236. doi:10.1016/j.ygyno.2008.07.035.CrossRefGoogle Scholar
  39. Sheehan, D., Meade, G., Foley, V. M., & Dowd, C. A. (2001). Structure, function and evolution of glutathione transferases: implications for classification of non-mammalian members of an ancient enzyme superfamily. The Biochemical Journal, 360(Pt 1), 1–16.CrossRefGoogle Scholar
  40. Shimada, T., & Guengerich, F. P. (2006). Inhibition of human cytochrome P450 1A1-, 1A2-, and 1B1-mediated activation of procarcinogens to genotoxic metabolites by polycyclic aromatic hydrocarbons. Chemical Research in Toxicology, 19(2), 288–294. doi:10.1021/tx050291v.CrossRefGoogle Scholar
  41. Silva, M., Azevedo, J., Rodriguez, P., Alfonso, A., Botana, L. M., & Vasconcelos, V. (2012). New gastropod vectors and tetrodotoxin potential expansion in temperate waters of the Atlantic ocean. Marine Drugs, 10(4), 712–726. doi:10.3390/md10040712.CrossRefGoogle Scholar
  42. Solé, M., Lima, D., Reis-Henriques, M. A., & Santos, M. M. (2008). Stress biomarkers in juvenile Senegal Sole, Solea senegalensis, exposed to the water-accommodated fraction of the “prestige” fuel oil. Bulletin of Environmental Contamination and Toxicology, 80(1), 19–23. doi:10.1007/s00128-007-9289-1.CrossRefGoogle Scholar
  43. Stagg, R. M., & Addison, R. F. (1995). An inter-laboratory comparison of measurements of ethoxyresorufin O-de-ethylase activity in Dab (limanda limanda) liver. Marine Environmental Research, 40(1), 93–108.CrossRefGoogle Scholar
  44. Stegeman, J. J., & Hahn, M. E. (1994). Biochemistry and molecular biology of monooxygenases: Current perspectives on form, functions and regulation of CYP 450 in aquatic species. In D. Malins & G. Ostrander (Eds.), Aquatic toxicolology, molecular biochemical and cellular perspectives (pp. 87–206). Boca Raton: Lewis Publishers.Google Scholar
  45. Sturm, A., Wogram, J., Hansen, D., & Liess, M. (1999). Potential use of cholinesterase in monitoring low levels of organophophates in small streams: natural variability in three-spined stickleback (Gasterosteus aculeatus) and relation to pollution. Environmental Toxicology and Chemistry, 18, 194–200.CrossRefGoogle Scholar
  46. Tabrez, S., & Ahmad, M. (2009). Effect of wastewater intake on antioxidant and marker enzymes of tissue damage in rat tissues: implications for the use of biochemical markers. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 47(10), 2465–2478. doi:10.1016/j.fct.2009.07.004.CrossRefGoogle Scholar
  47. Tabrez, S., & Ahmad, M. (2010). Cytochrome P450 system as a toxicity biomarker of industrial wastewater in rat tissues. Food and Chemical Toxicology: An International Journal Published for the British Industrial Biological Research Association, 48(3), 998–1001. doi:10.1016/j.fct.2009.12.024.CrossRefGoogle Scholar
  48. Tabrez, S., & Ahmad, M. (2011a). Oxidative stress-mediated genotoxicity of wastewaters collected from two different stations in northern India. Mutation Research, 726(1), 15–20. doi:10.1016/j.mrgentox.2011.07.012.CrossRefGoogle Scholar
  49. Tabrez, S., & Ahmad, M. (2011b). Components of antioxidative system in Allium cepa as the toxicity monitor of trichloroethylene (TCE). Toxicological & Environmental Chemistry, 93(1), 73–84. doi:10.1080/02772248.2010.498375.CrossRefGoogle Scholar
  50. Tabrez, S., & Ahmad, M. (2011c). Some enzymatic/nonenzymatic antioxidants as potential stress biomarkers of trichloroethylene, heavy metal mixture, and ethyl alcohol in rat tissues. Environmental Toxicology, 26(2), 207–216. doi:10.1002/tox.20548.CrossRefGoogle Scholar
  51. Tabrez, S., & Ahmad, M. (2011d). Mutagenicity of industrial wastewaters collected from two different stations in northern India. Journal of Applied Toxicology JAT, 31(8), 783–789. doi:10.1002/jat.1635.CrossRefGoogle Scholar
  52. Tabrez, S., & Ahmad, M. (2013). Cytochrome P450 system as potential biomarkers of certain toxicants: comparison between plant and animal models. Environmental Monitoring and Assessment, 185(4), 2977–2987. doi:10.1007/s10661-012-2765-z.CrossRefGoogle Scholar
  53. Tabrez, S., Shakil, S., Urooj, M., Damanhouri, G. A., Abuzenadah, A. M., & Ahmad, M. (2011). Genotoxicity testing and biomarker studies on surface waters: an overview of the techniques and their efficacies. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis & Ecotoxicology Reviews, 29(3), 250–275. doi:10.1080/10590501.2011.601849.CrossRefGoogle Scholar
  54. Valavanidis, A., Fiotakis, K., & Vlachogianni, T. (2008). Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis & Ecotoxicology Reviews, 26(4), 339–362. doi:10.1080/10590500802494538.CrossRefGoogle Scholar
  55. van der Oost, R., Beyer, J., & Vermeulen, N. P. E. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology, 13(2), 57–149.CrossRefGoogle Scholar
  56. Wasi, S., Tabrez, S., & Ahmad, M. (2013). Toxicological effects of major environmental pollutants: an overview. Environmental Monitoring and Assessment, 185(3), 2585–2593. doi:10.1007/s10661-012-2732-8.CrossRefGoogle Scholar
  57. Wepener, V., van Vuren, J. H. J., Chatiza, F. P., Mbizi, Z., Slabbert, L., & Masola, B. (2005). Active biomonitoring in freshwater environments: early warning signals from biomarkers in assessing biological effects of diffuse sources of pollutants. Physics and Chemistry of the Earth Parts A/B/C, 30(11–16), 751–761. doi:10.1016/j.pce.2005.08.018.CrossRefGoogle Scholar
  58. Whyte, J. J., Jung, R. E., Schmitt, C. J., & Tillitt, D. E. (2000). Ethoxyresorufin-O-deethylase (EROD) activity in fish as a biomarker of chemical exposure. Critical Reviews in Toxicology, 30(4), 347–570. doi:10.1080/10408440091159239.CrossRefGoogle Scholar
  59. Zaidi, S. K., Hoda, M. N., Tabrez, S., Ansari, S. A., Jafri, M. A., Shahnawaz Khan, M., et al. (2014). Protective effect of solanum nigrum leaves extract on immobilization stress induced changes in rat’s brain. Evidence-Based Complementary and Alternative Medicine eCAM. doi:10.1155/2014/912450.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Iftekhar Hassan
    • 1
  • Nasimudeen R. Jabir
    • 2
  • Saheem Ahmad
    • 3
  • Aaliya Shah
    • 4
  • Shams Tabrez
    • 2
  1. 1.Department of Zoology, College of SciencesKing Saud UniversityRiyadhSaudi Arabia
  2. 2.King Fahd Medical Research CenterKing Abdulaziz UniversityJeddahSaudi Arabia
  3. 3.Department of Bio-SciencesIntegral UniversityLucknowIndia
  4. 4.Department of Clinical BiochemistrySheri-Kashmir Institute of Medical Sciences (SKIMS)SrinagarIndia

Personalised recommendations