Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Addition of Adsorbents to Nanofiltration Membrane to Obtain Complete Pesticide Removal

  • 360 Accesses

  • 4 Citations


Removal of micropollutants from water with NF/RO membranes has received much attention in recent years. However, because of especially diffusion through the polyamide layer, NF/RO membranes never achieve complete removal, which may be a problem given the possibility of micropollutants causing adverse effects in even very low concentrations. In this paper, we have investigated a strategy of implementing adsorbents into the support layer of a NF membrane to increase the overall removal of three selected pesticides by combining membrane rejection and adsorption into one unit operation. The objective of the study was to act as proof of concept for the scheme, as well as to gain insights into how adsorbents may be inserted into the membrane support, and how they affect the membrane performance. The results showed that the addition of the adsorbents to the membrane increased the adsorption capacity of the membrane, and that the adsorbents could be embedded in the membrane without affecting the flux and rejection behaviour. This however depended very much on the specific manufacturing method. Furthermore, the adsorption capacity was found to vary significantly for the three pesticides, indicating a need for adsorbents designed to specifically target a given micropollutant. Overall, the concept of a complete removal membrane is realisable, but several challenges remain to be solved.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. Australian Pesticides and Veterinary Medicines Authority. (2008). Atrazine final review report and regulatory decision. Australian Pesticides and Veterinary Medicines Authority.

  2. Bellona, C., Drewes, J. E., Xu, P., & Amy, G. (2004). Factors affecting the rejection of organic solutes during NF/RO treatment—a literature review. Water Research, 38, 2795–2809. doi:10.1016/j.watres.2004.03.034.

  3. Global Environment Outlook 5, United Nations Environment Programme. (2012).

  4. Grube, A., Donaldson, D., Kiely, T., & Wu, L. (2011). Pesticides industry sales and usage 2006 and 2007 market estimates. United States Environmental Protection Agency.

  5. Hancock, N. T., Xu, P., Heil, D. M., Bellona, C., & Cath, T. Y. (2011). Comprehensive bench- and pilot-scale investigation of trace organic compounds rejection by forward osmosis. Environmental Science & Technology, 45(19), 8483–8490. doi:10.1021/es201654k.

  6. Karabelas, A., & Plakas, K. (2011). Membrane treatment of potable water for pesticides removal. In P. M. Larramendy (Ed.), Herbicides, theory and applications (pp. 369–408). InTech. doi:10.5772/13240.

  7. Kazner, C., Lehnberg, K., Kovalova, L., Wintgens, T., Melin, T., Hollender, J., & Dott, W. (2008). Removal of endocrine disruptors and cytostatics from effluent by nanofiltration in combination with adsorption on powdered activated carbon. Water Science & Technology, 58(8), 1699–1706. doi:10.2166/wst.2008.542.

  8. Kim, J., & Van der Bruggen, B. (2010). The use of nanoparticles in polymeric and ceramic membrane structures: Review of manufacturing procedures and performance improvement for water treatment. Environmental Pollution, 158(7), 2335–2349. doi:10.1016/j.envpol.2010.03.024.

  9. Kimura, K., Amy, G., Drewes, J. E., Heberer, T., Kim, T.-U., & Watanabe, Y. (2003). Rejection of organic micropollutants (disinfection by-products, endocrine disrupting compounds, and pharmaceutically active compounds) by NF/RO membranes. Journal of Membrane Science, 227(1–2), 113–121. doi:10.1016/j.memsci.2003.09.005.

  10. Kookana, R. S., Baskaran, S., & Naidu, R. (1998). Pesticide fate and behaviour in Australian soils in relation to contamination and management of soil and water: a review. Australian Journal of Soil Research, 36. doi:10.1071/SR97109.

  11. Madsen, H. T., & Søgaard, E. G. (2014). Applicability and modelling of nanofiltration and reverse osmosis for remediation of groundwater polluted with pesticides and pesticide transformation products. Separation and Purification Technology, 125, 111–119. doi:10.1016/j.seppur.2014.01.038.

  12. Mierzwa, J. C., Arieta, V., Verlage, M., Carvalho, J., & Vecitis, C. D. (2013). Effect of clay nanoparticles on the structure and performance of polyethersulfone ultrafitltration membranes. Desalination, 314, 147–158.

  13. Ng, L. Y., Mohammad, A. W., Leo, C. P., & Hilal, N. (2013). Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review. Desalination, 308, 15–33. doi:10.1016/j.desal.2010.11.033.

  14. Plakas, K. V., & Karabelas, A. J. (2008). Membrane retention of herbicides from single and multi-solute media: the effect of ionic environment. Journal of Membrane Science, 320, 325–334. doi:10.1016/j.memsci.2008.04.016.

  15. Plakas, K. V., & Karabelas, A. J. (2012). Removal of pesticides from water by NF and RO membranes—a review. Desalination, 287, 255–265. doi:10.1016/j.desal.2011.08.003.

  16. Pyrzynska, K. (2011). Carbon nanotubes as sorbents in the analysis of pesticides. Chemosphere, 83(11), 1407–1413. doi:10.1016/j.chemosphere.2011.01.057.

  17. Sánchez-González, S., Pose-Juan, E., Herrero-Hernández, E., Álvarez-Martín, A., Sánchez-Martín, M. J., & Rodríguez-Cruz, S. (2013). Pesticide residues in groundwaters and soils of agricultural areas in the Águeda River Basin from Spain and Portugal. International Journal of Environmental Analytical Chemistry, 93(15), 1585–1601. doi:10.1080/03067319.2013.814122.

  18. Sarkar, B., Venkateswralu, N., Rao, R. N., Bhattacharjee, C., & Kale, V. (2007). Treatment of pesticide contaminated surface water for production of potable water by a coagulation-adsorption-nanofiltration approach. Desalination, 212(1–3), 129–140. doi:10.1016/j.desal.2006.09.021.

  19. Schipper, P. N. M., Vissers, M. J. M., & van der Linden, A. M. A. (2008). Pesticides in groundwater and drinking water wells: Overview of the situation in the Netherlands. Water Science & Technology, 57(8), 1277–1286. doi:10.2166/wst.2008.255.

  20. Sotto, A., Rashed, A., Zhang, R.-X., Martínez, A., Braken, L., Luis, P., & Van der Bruggen, B. (2012). Improved membrane structures for seawater desalination by studying the influence of sublayers. Desalination, 287, 317–325. doi:10.1016/j.desal.2011.09.024.

  21. Strathmann, H., & Kock, K. (1977). The formation mechanism of phase inversion membranes. Desalination, 21, 241–255.

  22. Thorling, L., Brüsch, W., Hansen, B., Larsen, C. L., Mielby, S., Troldnorg, L., & Sørensen, B. L. (2013). Grundvand - Status og udvikling 1989–2012 (Groundwater: Status and development 1989–2012). Technical report, Geological Survey of Denmark and Greenland, 2013.

  23. Verliefde, A. R. D., Heijman, S. G. J., Cornelissen, E. R., Amy, G., Van der Bruggen, B., & van Dijk, J. C. (2007). Influence of electrostatic interactions on the rejection with NF and assessment of the removal efficiency during NF/GAC treatment of pharmaceutically active compounds in surface water. Water Research, 41(15), 3227–3240. doi:10.1016/j.watres.2007.05.022.

  24. Xie, M., Nghiem, L. D., Price, W. E., & Elimelech, M. (2012). Comparison of the removal of hydrophobic trace organic contaminants by forward osmosis and reverse osmosis. Water Research, 46(8), 2683–2692. doi:10.1016/j.watres.2012.02.023.

  25. Yangali-Quintanilla, V., Maeng, S. K., Fujioka, T., Kennedy, M., & Amy, G. (2010). Proposing nanofiltration as acceptable barrier for organic contaminants in water reuse. Journal of Membrane Science, 362(1–2), 334–345. doi:10.1016/j.memsci.2010.06.058.

  26. Zhang, R.-X., Vanneste, J., Poelmans, L., Sotto, A., Wang, X.-L., & Van der Bruggen, B. (2012). Effect of the manufacturing conditions on the structure and performance of thin-film composite membranes. Journal of Applied Polymer Science, 135, 3755–3769. doi:10.1002/app.36542.

  27. Zhou, Q., Xiao, J., Wang, W., Liu, G., Shi, Q., & Wang, J. (2006). Determination of atrazine and simazine in environmental water samples using multiwalled carbon nanotubes as the adsorbents for preconcentration prior to high performance liquid chromatography with diode array detector. Talanta, 68(4), 1309–1315. doi:10.1016/j.talanta.2005.07.050.

Download references


Thanks go to Giuseppe Genduso and Jiuyang Lin for help with SEM and membrane manufacturing. Economic support was received from the Otto Mønsted foundation. Financial support from the Danish Ministry of Science, Technology, and Innovation in the form of a Ph.D. study grant is acknowledged

Author information

Correspondence to Henrik T. Madsen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Madsen, H.T., Ammi-said, A., Van der Bruggen, B. et al. Addition of Adsorbents to Nanofiltration Membrane to Obtain Complete Pesticide Removal. Water Air Soil Pollut 226, 160 (2015).

Download citation


  • Membrane filtration
  • Nanofiltration
  • Adsorption
  • Pesticides