Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Investigation of Methylene Blue Biosorption and Biodegradation by Bacillus thuringiensis 016

  • 335 Accesses

  • 6 Citations

Abstract

In this work, the removal of methylene blue by Bacillus thuringiensis (Bt) 016 was investigated through batch experiments and microscopic investigations. It was found that methylene blue could not affect the growth of B. thuringiensis 016 at the concentration ranging from 5 to 25 mg/L, and be removed with the increase of biomass. Further studies indicated that Bt 016 biomass possessed strong ability of methylene blue biosorption with a quick process. Twenty-five milligrams of methylene blue per liter could be completely biosorbed within 2 h. The pH value could affect the removal of methylene blue in a large extent. UV–visible, Fourier transform infrared (FT-IR) spectroscopy analyses, and microscopic investigations suggested that the removal of methylene blue could be divided into two steps as follows: (1) rapid biosorption of methylene blue on Bt 016 biomass through electrostatic attraction or chelating activity of functional groups; (2) methylene blue was further degraded by Bt 016 through enzyme-mediated or couple with the metabolism process.

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Baldev, E., MubarakAli, D., Ilavarasi, A., Pandiaraj, D., Ishack, K., & Thajuddin, N. (2013). Degradation of synthetic dye, Rhodamine B to environmentally non-toxic products using microalgae. Colloids and Surfaces B-Biointerfaces, 105, 207–214.

  2. Brar, S. K., Verma, M., Tyagi, R. D., Valero, J. R., & Surampalli, R. Y. (2009). Concurrent degradation of dimethyl phthalate (DMP) during production of Bacillus thuringiensis based biopesticides. Journal of Hazardous Materials, 171, 1016–1023.

  3. Bravo, A., Gill, S. S., & Soberon, M. (2007). Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, 49, 423–435.

  4. Chen, C. H., Chang, C. F., Ho, C. H., Tsai, T. L., & Liu, S. M. (2008). Biodegradation of crystal violet by a Shewanella sp. NTOU1. Chemosphere, 72, 1712–1720.

  5. Chen, Z., Huang, Z., Cheng, Y., Pan, D., Pan, X., Yu, M., Pan, Z., Lin, Z., Guan, X., & Wu, Z. (2012). Cr(VI) uptake mechanism of Bacillus cereus. Chemosphere, 87, 211–216.

  6. Cheng, Y., Lin, H. Y., Chen, Z. L., Megharaj, M., & Naidu, R. (2012). Biodegradation of crystal violet using Burkholderia vietnamiensis C09V immobilized on PVA-sodium alginate-kaolin gel beads. Ecotoxicology and Environmental Safety, 83, 108–114.

  7. Choudhary, S., & Sar, P. (2011). Uranium biomineralization by a metal resistant Pseudomonas aeruginosa strain isolated from contaminated mine waste. Journal of Hazardous Materials, 186, 336–343.

  8. Chung, Y. C., & Chen, C. Y. (2009). Degradation of azo dye reactive violet 5 by TiO2 photocatalysis. Earth and Environmental Science, 7, 347–352.

  9. Das, S. K., Bhowal, J., Das, A. R., & Guha, A. K. (2006). Adsorption behavior of rhodamine B on Rhizopus oryzae biomass. Langmuir, 22, 7265–7272.

  10. Dave, S. R., & Dave, R. H. (2009). Isolation and characterization of Bacillus thuringiensis for Acid red 119 dye decolourisation. Bioresource Technology, 100, 249–253.

  11. Forgacs, E., Cserhati, T., & Oros, G. (2004). Removal of synthetic dyes from wastewaters: a review. Environment International, 30, 953–971.

  12. Gopinath, K. P., Murugesan, S., Abraham, J., & Muthukumar, K. (2009). Bacillus sp. Mutant for improved biodegradation of Congo red: random mutagenesis approach. Bioresource Technology, 100, 6295–6300.

  13. Guler, U. A., & Sarioglu, M. (2014). Mono and binary component biosorption of Cu(II), Ni(II), and Methylene Blue onto raw and pretreated S. cerevisiae: equilibrium and kinetics. Desalination and Water Treatment, 52, 4871–4888.

  14. Hu, T. L. (1996). Removal of reactive dyes from aqueous solution by different bacterial genera. Water Science and Technology, 34, 89–95.

  15. Karn, S. K., Chakrabarty, S. K., & Reddy, M. S. (2010). Characterization of pentachlorophenol degrading Bacillus strains from secondary pulp-and-paper-industry sludge. International Biodeterioration & Biodegradation, 64, 609–613.

  16. Kebria, D. Y., Khodadadi, A., Ganjidoust, H., Badkoubi, A., & Amoozegar, M. A. (2009). Isolation and characterization of a novel native Bacillus strain capable of degrading diesel fuel. International Journal of Environmental Science and Technology, 6, 435–442.

  17. Lahkimi, A., Oturan, M. A., Oturan, N., & Chaouch, M. (2007). Removal of textile dyes from water by the electro-Fenton process. Environmental Chemistry Letters, 5, 35–39.

  18. Liao, C. S., Hung, C. H., & Chao, S. L. (2013). Decolorization of azo dye reactive black B by Bacillus cereus strain HJ-1. Chemosphere, 90, 2109–2114.

  19. Lim, C. L., Morad, N., Teng, T. T., & Norli, I. (2011). Chemical Oxygen Demand (COD) reduction of a reactive dye wastewater using H2O2/pyridine/Cu (II) system. Desalination, 278, 26–30.

  20. Lim, C. K., Bay, H. H., Aris, A., Majid, Z. A., & Ibrahim, Z. (2013). Biosorption and biodegradation of Acid Orange 7 by Enterococcus faecalis strain ZL: optimization by response surface methodological approach. Environmental Science and Pollution Research, 20, 5056–5066.

  21. Lv, G. Y., Cheng, J. H., Chen, X. Y., Zhang, Z. F., & Fan, L. F. (2013). Biological decolorization of malachite green by Deinococcus radiodurans R1. Bioresource Technology, 144, 275–280.

  22. Ma, L., & Zhang, W. X. (2008). Enhanced biological treatment of industrial wastewater with bimetallic zero-valent iron. Environmental Science & Technology, 42, 5384–5389.

  23. Mohamed, Z. K., Ahmed, M. A., Fetyan, N. A., & Elnagdy, S. M. (2010). Isolation and molecular characterisation of malathion-degrading bacterial strains from waste water in Egypt. Journal of Advanced Research, 1(145–149), 2010.

  24. Ncibi, M. C., Mahjoub, B., & Seffen, M. (2007). Kinetic and equilibrium studies of methylene blue biosorption by Posidonia oceanica (L.) fibres. Journal of Hazardous Materials, 139, 280–285.

  25. Ncibi, M. C., Ben Hamissa, A. M., Fathallah, A., Kortas, M. H., Baklouti, T., Mahjoub, B., & Seffen, M. (2009). Biosorptive uptake of methylene blue using Mediterranean green alga Enteromorpha spp. Journal of Hazardous Materials, 170, 1050–1055.

  26. Noraini, C. H. C., Morad, N., Norli, I., Teng, T. T., & Ogugbue, C. J. (2012). Methylene blue degradation by Sphingomonas paucimobilis under aerobic conditions. Water, Air, and Soil Pollution, 223, 5131–5142.

  27. Ozturk, A., & Abdullah, M. I. (2006). Toxicological effect of indole and its azo dye derivatives on some microorganisms under aerobic conditions. Science of the Total Environment, 358, 137–142.

  28. Pagga, U., & Taeger, K. (1994). Development of a method for adsorption of dyestuffs on activated sludge. Water Research, 28, 1051–1057.

  29. Pan, T., Ren, S. Z., Xu, M. Y., Sun, G. P., & Guo, J. (2013). Extractive biodecolorization of triphenylmethane dyes in cloud point system by Aeromonas hydrophila DN322p. Applied Microbiology and Biotechnology, 97, 6051–6055.

  30. Pearce, C. I., Lloyd, J. R., & Guthrie, J. T. (2003). The removal of colour from textile wastewater using whole bacterial cells: a review. Dyes and Pigments, 58, 179–196.

  31. Poznyak, T., Colindres, P., & Chairez, I. (2007). Treatment of textile industrial dyes by simple ozonation with water recirculation. Journal of the Mexican Chemical Society, 51, 81–86.

  32. Prasad, A., & Rao, K. (2013). Aerobic biodegradation of Azo dye by Bacillus cohnii MTCC 3616; an obligately alkaliphilic bacterium and toxicity evaluation of metabolites by different bioassay systems. Applied Microbiology and Biotechnology, 97, 7469–7481.

  33. Rafatullah, M., Sulaiman, O., Hashim, R., & Ahmad, A. (2010). Adsorption of methylene blue on low-cost adsorbents: a review. Journal of Hazardous Materials, 177, 70–80.

  34. Ravikumar, K., Deebika, B., & Balu, K. (2005). Decolourization of aqueous dye solutions by a novel adsorbent: application of statistical designs and surface plots for the optimization and regression analysis. Journal of Hazardous Materials, 122, 75–83.

  35. Raymond, B., Johnston, P. R., Nielsen-LeRoux, C., Lereclus, D., & Crickmore, N. (2010). Bacillus thuringiensis: an impotent pathogen? Trends in Microbiology, 18, 189–194.

  36. Sellami, S., Zghal, T., Cherif, M., Zalila-Kolsi, I., Jaoua, S., & Jamoussi, K. (2013). Screening and identification of a Bacillus thuringiensis strain S1/4 with large and efficient insecticidal activities. Journal of Basic Microbiology, 53, 539–548.

  37. Soberon, M., Gill, S. S., & Bravo, A. (2009). Signaling versus punching hole: How do Bacillus thuringiensis toxins kill insect midgut cells? Cellular and Molecular Life Sciences, 66, 1337–1349.

  38. Tamboli, D. P., Kagalkar, A. N., Jadhav, M. U., Jadhav, J. P., & Govindwar, S. P. (2010). Production of polyhydroxyhexadecanoic acid by using waste biomass of Sphingobacterium sp. ATM generated after degradation of textile dye Direct red 5B. Bioresource Technology, 101, 2421–2427.

  39. Tan, L., Ning, S. X., Zhang, X. W., & Shi, S. N. (2013). Aerobic decolorization and degradation of azo dyes by growing cells of a newly isolated yeast Candida tropicalis TL-F1. Bioresource Technology, 138, 307–313.

  40. Wang, Y. S., Liu, J. C., Chen, W. C., & Yen, J. H. (2008). Characterization of acetanilide herbicides degrading bacteria isolated from tea garden soil. Microbial Ecology, 55, 435–443.

Download references

Acknowledgments

This work is supported by the National High Technology Research and Development Program 863 (Grant No. 2011AA10A203), Project of Fujian-Taiwan Joint Center for Ecological Control of Crop Pests (Minjiaoke[2013]51), the National Basic Research Program of China (973 Program) (No. 2010CB933501, 2013CB934302), National Natural Science Foundation of China (21477129), the Outstanding Youth Fund (21125730), and the Leading Talents of Fujian Province College (k8012012a).

Author information

Correspondence to Xiong Guan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Chen, H., Pan, X. et al. Investigation of Methylene Blue Biosorption and Biodegradation by Bacillus thuringiensis 016. Water Air Soil Pollut 226, 146 (2015). https://doi.org/10.1007/s11270-015-2417-3

Download citation

Keywords

  • Methylene blue
  • Biosorption
  • Biodegradation
  • Bacillus thuringiensis