Evaluation of the Impact of Different Soil Salinization Processes on Organic and Mineral Soils

  • J. Jesus
  • F. Castro
  • A. Niemelä
  • Maria-Teresa Borges
  • A. S. DankoEmail author


Soil salinization is a worldwide problem of which secondary salinization is increasingly more frequent, threatening agricultural production. Salt accumulation affects not only plants but also the physio-chemical characteristics of the soil, limiting its potential use. Climate change will further increase the rate of salinization of soil and groundwater as it leads to increased evaporation, promotes capillary rise of saline groundwater as well as increased irrigation with brackish water. Episodic seawater inundation of coastal areas is likely to increase in frequency as well. This work analyzed three types of salinization: seawater inundation (by irrigating soils with a 54 dS m−1 NaCl solution), saline groundwater capillary rise (soil contact with a 27 dS m−1 NaCl solution), and irrigation with two types of brackish water with different residual sodium carbonate (RSC). Two soils were used: a mineral soil (7.0 % clay; 0.7 % organic matter) and an organic soil (2.7 % clay; 7.4 % organic matter). The tested soils had different resilience to salinization: The mineral soil had higher sodium adsorption ratio (SAR) due to low levels of calcium + magnesium but had higher leaching efficiency and more limited effects of RSC. The organic soil however was more prone to capillary rise but seemingly more structurally stable. Our results suggest that short-term inundation with seawater can be mitigated by leaching although soil structure may be affected and that capillary rise of brackish groundwater should be carefully monitored. Also, the impact of irrigation with brackish water with high RSC can be inferior in soils with higher exchangeable acidity.


Soil salinization Seawater inundation Brackish irrigation Capillary rise 



The authors would like to acknowledge the Portuguese Science and Technology Foundation (FCT) for the PhD grant (FCT–DFRH–SFRH/BD/84750/2012) and the Ciência 2008 program. In addition, the authors would like the thank Prof. Aurora Silva (FEUP) and Prof. Cristina Vila (FEUP) for assistance in data acquisition methods, Prof. Joaquim Góis (FEUP) for help in statistical analysis, and Prof. Manuela Carvalho (ISEP) for sharing her data on soil analysis.


  1. Abulnour, A. G., Sorour, M. H., & Talaat, H. A. (2003). Comparative economics for desalting of agricultural drainage water (ADW). Desalination, 152(1–3), 353–357. doi: 10.1016/S0011-9164(02)01083-4.CrossRefGoogle Scholar
  2. Aprile, F., & Lorandi, R. (2012). Evaluation of cation exchange capacity (CEC) in tropical soils using four different analytical methods. Journal of Agricultural Science, 4(6), 278.CrossRefGoogle Scholar
  3. Aslam, R., Bostan, N., Nabghae, A., Maria, M., & Safdar, W. (2011). A critical review on halophytes: salt tolerant plants. [Review]. Journal of Medicinal Plants Research, 5(33), 7108–7118. doi: 10.5897/JMPRx11.009.Google Scholar
  4. Aydemir, S., & Sünger, H. (2011). Bioreclamation effect and growth of a leguminous forage plant (Lotus corniculatus) in calcareous saline sodic soil. African Journal of Biotechnology, 10(69), 115571–115577.CrossRefGoogle Scholar
  5. Barbosa, B., Costa, J., Fernando, A. L., & Papazoglou, E. G. (2015). Wastewater reuse for fiber crops cultivation as a strategy to mitigate desertification. Industrial Crops and Products. doi: 10.1016/j.indcrop.2014.07.007.Google Scholar
  6. Barnes, J. (2012). Mixing waters: the reuse of agricultural drainage water in Egypt. Geoforum, 57, 181–191. doi: 10.1016/j.geoforum.2012.11.019.CrossRefGoogle Scholar
  7. Berglund, Ö., Berglund, K., & Klemedtsson, L. (2010). A lysimeter study on the effect of temperature on CO2 emission from cultivated peat soils. Geoderma, 154(3–4), 211–218. doi: 10.1016/j.geoderma.2008.09.007.CrossRefGoogle Scholar
  8. Bunani, S., Yörükoğlu, E., Yüksel, Ü., Kabay, N., Yüksel, M., & Sert, G. (2015). Application of reverse osmosis for reuse of secondary treated urban wastewater in agricultural irrigation. Desalination (0), doi: 10.1016/j.desal.2014.07.030.
  9. Chagué-Goff, C., Wong, H. Y., Sugawara, D., Goff, J., Nishimura, Y., Beer, J., et al. (2014). Impact of tsunami inundation on soil salinisation: up to one year after the 2011 Tohoku-Oki Tsunami. In Y. A. Kontar, V. Santiago-Fandiño, & T. Takahashi (Eds.), Tsunami Events and Lessons Learned (Vol. 35, pp. 193-214, Advances in Natural and Technological Hazards Research): Springer Netherlands.Google Scholar
  10. Choudhary, O. P., Ghuman, B. S., Dhaliwal, M. S., & Chawla, N. (2010). Yield and quality of two tomato (Solanum lycopersicum L.) cultivars as influenced by drip and furrow irrigation using waters having high residual sodium carbonate. Irrigation Science, 28(6), 513–523. doi: 10.1007/s00271-010-0211-y.CrossRefGoogle Scholar
  11. Choudhary, O. P., Ghuman, B. S., Bijay, S., Thuy, N., & Buresh, R. J. (2011). Effects of long-term use of sodic water irrigation, amendments and crop residues on soil properties and crop yields in rice–wheat cropping system in a calcareous soil. Field Crops Research, 121(3), 363–372. doi: 10.1016/j.fcr.2011.01.004.CrossRefGoogle Scholar
  12. Eusufzai, M., & Fujii, K. (2012). Effect of organic matter amendment on hydraulic and pore characteristics of a clay loam soil. Open Journal of Soil Science, 2(4), 372–381. doi: 10.4236/ojss.2012.24044.CrossRefGoogle Scholar
  13. Fan, X., Pedroli, B., Liu, G., Liu, Q., Liu, H., & Shu, L. (2012). Soil salinity development in the yellow river delta in relation to groundwater dynamics. Land Degradation & Development, 23(2), 175–189. doi: 10.1002/ldr.1071.CrossRefGoogle Scholar
  14. Glenn, E. P., McKeon, C., Gerhart, V., Nagler, P. L., Jordan, F., & Artiola, J. (2009). Deficit irrigation of a landscape halophyte for reuse of saline waste water in a desert city. Landscape and Urban Planning, 89(3–4), 57–64. doi: 10.1016/j.landurbplan.2008.10.008.CrossRefGoogle Scholar
  15. Glenn, E. P., Anday, T., Chaturvedi, R., Martinez-Garcia, R., Pearlstein, S., Soliz, D., et al. (2013). Three halophytes for saline-water agriculture: an oilseed, a forage and a grain crop. Environmental and Experimental Botany, 92, 110–121. doi: 10.1016/j.envexpbot.2012.05.002.CrossRefGoogle Scholar
  16. Heiri, O., Lotter, A., et al. (2001). Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology, 25(1), 101–110.CrossRefGoogle Scholar
  17. Herron, N., Davis, R., Dawes, W., & Evans, R. (2003). Modelling the impacts of strategic tree plantings on salt loads and flows in the Macquarie River Catchment, NSW, Australia. Journal of Environmental Management, 68(1), 37–50. doi: 10.1016/S0301-4797(02)00230-X.CrossRefGoogle Scholar
  18. Ibrahimi, M., Miyazaki, T., Nishimura, T., & Imoto, H. (2013). Contribution of shallow groundwater rapid fluctuation to soil salinization under arid and semiarid climate. Arabian Journal of Geosciences 1-11, doi: 10.1007/s12517-013-1084-1.
  19. Ityel, E., Ben-Gal, A., Silberbush, M., & Lazarovitch, N. (2014). Increased root zone oxygen by a capillary barrier is beneficial to bell pepper irrigated with brackish water in an arid region. Agricultural Water Management, 131, 108–114. doi: 10.1016/j.agwat.2013.09.018.CrossRefGoogle Scholar
  20. Jesus, J., Danko, A. S., Fúza, A., & Borges, M.-T. (2015). Phytoremediation of salt affected soils: a review of processes, applicability and the impact of climate change. Environmental Science and Pollution Research. doi: 10.1007/s11356-015-4205-4.Google Scholar
  21. Jorenush, M. H., & Sepaskhah, A. R. (2003). Modelling capillary rise and soil salinity for shallow saline water table under irrigated and non-irrigated conditions. Agricultural Water Management, 61(2), 125–141. doi: 10.1016/S0378-3774(02)00176-2.CrossRefGoogle Scholar
  22. Khodaverdiloo, H., & Taghlidabad, R. H. (2013). Phytoavailability and potential transfer of Pb from a salt-affected soil to Atriplex verucifera, Salicornia europaea and Chenopodium album. Chemistry and Ecology, 1-11, doi: 10.1080/02757540.2013.861827.
  23. Kirwan, M. L., & Guntenspergen, G. R. (2012). Feedbacks between inundation, root production, and shoot growth in a rapidly submerging brackish marsh. Journal of Ecology, 100(3), 764–770. doi: 10.1111/j.1365-2745.2012.01957.x.CrossRefGoogle Scholar
  24. Malvern MasterSizer Model MS2000. Hydro G, Malvern instruments. UK.Google Scholar
  25. Mateo-Sagasta, J., & Burke, J. (2012). Agriculture and water quality interactions: a global overview. SOLAW Background Thematic Report - TR08.Google Scholar
  26. McLeod, M. K., Slavich, P. G., Irhas, Y., Moore, N., Rachman, A., Ali, N., et al. (2010). Soil salinity in Aceh after the December 2004 Indian Ocean tsunami. Agricultural Water Management, 97(5), 605–613. doi: 10.1016/j.agwat.2009.10.014.CrossRefGoogle Scholar
  27. Minhas, P. S., Dubey, S. K., & Sharma, D. R. (2007). Effects on soil and paddy–wheat crops irrigated with waters containing residual alkalinity. Soil Use and Management, 23(3), 254–261. doi: 10.1111/j.1475-2743.2007.00090.x.CrossRefGoogle Scholar
  28. Murtaza, G., Ghafoor, A., Owens, G., Qadir, M., & Kahlon, U. Z. (2009). Environmental and economic benefits of saline-sodic soil reclamation using low-quality water and soil amendments in conjunction with a rice–wheat cropping system. Journal of Agronomy and Crop Science, 195(2), 124–136. doi: 10.1111/j.1439-037X.2008.00350.x.CrossRefGoogle Scholar
  29. Pandey, C., & Shukla, S. (2006). Effects of composted yard waste on water movement in sandy soil. Compost Science & Utilization, 14(4), 252–259. doi: 10.1080/1065657X.2006.10702293.CrossRefGoogle Scholar
  30. Pitman, M., & Läuchli, A. (2004). Global impact of salinity and agricultural ecosystems. In A. Läuchli & U. Lüttge (Eds.), Salinity: environment - plants - molecules (pp. 3–20). Netherlands: Springer.CrossRefGoogle Scholar
  31. Prasad, A., Kumar, D., & Singh, D. V. (2001). Effect of residual sodium carbonate in irrigation water on the soil sodication and yield of palmarosa (Cymbopogon martinni) and lemongrass (Cymbopogon flexuosus). Agricultural Water Management, 50(3), 161–172. doi: 10.1016/S0378-3774(01)00103-2.CrossRefGoogle Scholar
  32. Qadir, M., & Schubert, S. (2002). Degradation processes and nutrient constraints in sodic soils. Land Degradation & Development, 13(4), 275–294. doi: 10.1002/ldr.504.CrossRefGoogle Scholar
  33. Qadir, M., Steffens, D., Yan, F., & Schubert, S. (2003). Sodium removal from a calcareous saline–sodic soil through leaching and plant uptake during phytoremediation. Land Degradation & Development, 14(3), 301–307. doi: 10.1002/ldr.558.CrossRefGoogle Scholar
  34. Qadir, M., Noble, A. D., et al. (2005). Driving forces for sodium removal during phytoremediation of calcareous sodic and saline–sodic soils: a review. Soil Use and Management, 21(2), 173–180. doi: 10.1079/SUM2005312.CrossRefGoogle Scholar
  35. Rengasamy, P. (2006). World salinization with emphasis on Australia. Journal of Experimental Botany, 57(5), 1017–1023. doi: 10.1093/jxb/erj108.CrossRefGoogle Scholar
  36. Ritzema, H. P., Satyanarayana, T. V., Raman, S., & Boonstra, J. (2008). Subsurface drainage to combat waterlogging and salinity in irrigated lands in India: lessons learned in farmers’ fields. Agricultural Water Management, 95(3), 179–189. doi: 10.1016/j.agwat.2007.09.012.CrossRefGoogle Scholar
  37. Sadiq, M., Hassan, G., Mehdi, S. M., Hussain, N., & Jamil, M. (2007). Amelioration of saline-sodic soils with tillage implements and sulfuric acid application. Pedosphere, 17(2), 182–190. doi: 10.1016/s1002-0160(07)60024-1.CrossRefGoogle Scholar
  38. Schofield, R., Thomas, D. S. G., & Kirkby, M. J. (2001). Causal processes of soil salinization in Tunisia, Spain and Hungary. Land Degradation & Development, 12(2), 163–181. doi: 10.1002/ldr.446.CrossRefGoogle Scholar
  39. Szabolcs, I. (1974). Salt affected soils in Europe. Research Institute for Soil Science and Agricultural Chemistry of the Hungarian Academy of Sciences: Martinus Nijhoff.Google Scholar
  40. U.S. Salinity Laboratory. (1954). Diagnosis and improvement of saline and alkali soils. Washington, D.C.: US Dept. of Agriculture.Google Scholar
  41. Violette, S., Boulicot, G., & Gorelick, S. M. (2009). Tsunami-induced groundwater salinization in southeastern India. Comptes Rendus Geoscience, 341(4), 339–346. doi: 10.1016/j.crte.2008.11.013.CrossRefGoogle Scholar
  42. Weert, F. V., Gun, J. V. D., & Reckman, J. (2009). Global overview of saline groundwater occurrence and genesis. Utrecht/Paris, IGRAC/UNESCO.
  43. Yensen, N. P., & Biel, K. Y. (2006). Soil remediation via salt-conduction and the hypotheses of halosynthesis and photoprotection ecophysiology of high salinity tolerant plants. In M. A. Khan, & D. J. Weber (Eds.), (Vol. 40, pp. 313-344, Tasks for vegetation science 34): Springer Netherlands.Google Scholar
  44. Yoshii, T., Imamura, M., Matsuyama, M., Koshimura, S., Matsuoka, M., Mas, E., et al. (2013). Salinity in soils and tsunami deposits in areas affected by the 2010 Chile and 2011 Japan tsunamis. Pure and Applied Geophysics, 170(6–8), 1047–1066. doi: 10.1007/s00024-012-0530-4.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • J. Jesus
    • 1
  • F. Castro
    • 1
  • A. Niemelä
    • 1
    • 2
  • Maria-Teresa Borges
    • 3
    • 4
  • A. S. Danko
    • 1
    Email author
  1. 1.Centre for Natural Resources and the Environment (CERENA), Faculty of EngineeringUniversity of PortoPortoPortugal
  2. 2.Faculty of TechnologyUniversity of OuluOuluFinland
  3. 3.Biology Department, Science FacultyPorto University (FCUP)PortoPortugal
  4. 4.CIIMARUniversity of PortoPortoPortugal

Personalised recommendations