Water, Air, & Soil Pollution

, 226:10 | Cite as

Efficient Adsorptive Removal of Humic Acid from Water Using Zeolitic Imidazole Framework-8 (ZIF-8)

  • Kun-Yi Andrew LinEmail author
  • Hsuan-Ang Chang


To develop an efficient adsorbent for humic acid, the present study represents the first attempt to investigate the capability of zeolitic imidazole frameworks to remove humic acid from water. Zeolitic imidazole framework-8 (ZIF-8) is particularly selected as a prototype ZIF to adsorb humic acid owing to its high stability in aqueous solutions. ZIF-8 was synthesized and characterized using scanning electronic microscopy (SEM), powder X-ray diffraction pattern (PXRD), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analyzer (TGA) and then used to adsorb humic acid under various conditions. The structure of ZIF-8 was found to remain intact after the exposure to humic acid in water. Factors affecting the adsorption were examined, including solid-to-liquid ratio, mixing time, temperature, pH, presence of salt, and surfactants. The adsorption capacity of ZIF-8 was found to be much higher than that of activated carbon, fly ash, zeolites, graphite, etc., showing its promising potential for removal of humic acid. The adsorption mechanism could be attributed to the electrostatic interaction between the positive surface of ZIF-8 and the acidic sites of humic acid, as well as the π–π stacking interaction between imidazole of ZIF-8 and benzene rings of humic acid. The humic acid adsorption to ZIF-8 could be enhanced in the acidic conditions, and the adsorption process remained highly stable in the solutions of a wide range of NaCl concentrations. ZIF-8 can be also regenerated by simple ethanol-washing process and reused for humic acid adsorption. These features enable ZIF-8 to be an efficient and stable adsorbent to remove humic acid from water.


Metal organic frameworks Zeolitic imidazole framework ZIF-8 Humic acid Adsorption 



The authors thank Ms. Resta Saphore for her assistance on the manuscript proofreading and editing.

Supplementary material

11270_2014_2280_MOESM1_ESM.docx (967 kb)
ESM 1 (DOCX 966 kb)


  1. Adak, A., Pal, A., & Bandyopadhyay, M. (2005). Spectrophotometric determination of anionic surfactants in wastewater using acridine orange. Indian Journal of Chemical Technology, 12, 145–148.Google Scholar
  2. Ahmad, R., Wong-Foy, A. G., & Matzger, A. J. (2009). Microporous coordination polymers as selective sorbents for liquid chromatography. Langmuir, 25(20), 11977–11979. doi: 10.1021/la902276a.CrossRefGoogle Scholar
  3. Ahmed, A., Forster, M., Clowes, R., Bradshaw, D., Myers, P., & Zhang, H. (2013). Silica SOS@HKUST-1 composite microspheres as easily packed stationary phases for fast separation. Journal of Materials Chemistry A, 1(10), 3276–3286. doi: 10.1039/C2TA01125E.CrossRefGoogle Scholar
  4. Arrhenius, S. A. (1889). Über die dissociationswärme und den einflusß der temperatur auf den dissociationsgrad der elektrolyte. Zeitschrift für Physikalische Chemie, 4, 96–116.Google Scholar
  5. Bai, R., & Zhang, X. (2001). Polypyrrole-coated granules for humic acid removal. Journal of Colloid and Interface Science, 243(1), 52–60. doi: 10.1006/jcis.2001.7843.CrossRefGoogle Scholar
  6. Brum, M. C., & Oliveira, J. F. (2007). Removal of humic acid from water by precipitate flotation using cationic surfactants. Minerals Engineering, 20(9), 945–949. doi: 10.1016/j.mineng.2007.03.004.CrossRefGoogle Scholar
  7. Chen, J., Cai, Y., Clark, M., & Yu, Y. (2013). Equilibrium and kinetic studies of phosphate removal from solution onto a hydrothermally modified oyster shell material. PLoS ONE, 8(4), e60243. doi: 10.1371/journal.pone.0060243.CrossRefGoogle Scholar
  8. Cheng, Z., Liu, X., Han, M., & Ma, W. (2010). Adsorption kinetic character of copper ions onto a modified chitosan transparent thin membrane from aqueous solution. Journal of Hazardous Materials, 182(1–3), 408–415. doi: 10.1016/j.jhazmat.2010.06.048.CrossRefGoogle Scholar
  9. Cheung, W. H., Szeto, Y. S., & McKay, G. (2007). Intraparticle diffusion processes during acid dye adsorption onto chitosan. Bioresource Technology, 98(15), 2897–2904. doi: 10.1016/j.biortech.2006.09.045.CrossRefGoogle Scholar
  10. Corma, A., García, H., Llabrés, I., & Xamena, F. X. (2010). Engineering metal organic frameworks for heterogeneous catalysis. Chemical Reviews, 110(8), 4606–4655. doi: 10.1021/cr9003924.CrossRefGoogle Scholar
  11. Cravillon, J., Schroder, C. A., Bux, H., Rothkirch, A., Caro, J., & Wiebcke, M. (2012). Formate modulated solvothermal synthesis of ZIF-8 investigated using time-resolved in situ X-ray diffraction and scanning electron microscopy. CrystEngComm, 14(2), 492–498. doi: 10.1039/C1CE06002C.CrossRefGoogle Scholar
  12. Daifullah, A. A. M., Girgis, B. S., & Gad, H. M. H. (2004). A study of the factors affecting the removal of humic acid by activated carbon prepared from biomass material. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 235(1–3), 1–10. doi: 10.1016/j.colsurfa.2003.12.020.CrossRefGoogle Scholar
  13. Domany, Z., Galambos, I., Vatai, G., & Bekassy-Molnar, E. (2002). Humic substances removal from drinking water by membrane filtration. Desalination, 145(1–3), 333–337. doi: 10.1016/S0011-9164(02)00432-0.CrossRefGoogle Scholar
  14. Doulia, D., Leodopoulos, C., Gimouhopoulos, K., & Rigas, F. (2009). Adsorption of humic acid on acid-activated Greek bentonite. Journal of Colloid and Interface Science, 340(2), 131–141. doi: 10.1016/j.jcis.2009.07.028.CrossRefGoogle Scholar
  15. Dubinin, M. M. (1960). The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces. Chemical Reviews, 60(2), 235–241. doi: 10.1021/cr60204a006.CrossRefGoogle Scholar
  16. El-Hankari, S., Huo, J., Ahmed, A., Zhang, H., & Bradshaw, D. (2014). Surface etching of HKUST-1 promoted via supramolecular interactions for chromatography. Journal of Materials Chemistry A, 2, 13479–13485. doi: 10.1039/C4TA02568G.CrossRefGoogle Scholar
  17. Freundlich, H. M. F. (1906). Über die Adsorption in Lösungen. Zeitschrift für Physikalische Chemie, 57, 385–470.Google Scholar
  18. Gascon, J., Corma, A., Kapteijn, F., & Llabrés i Xamena, F. X. (2013). Metal organic framework catalysis: Quo vadis? ACS Catalysis, 361–378, doi: 10.1021/cs400959k.
  19. Giasuddin, A. B. M., Kanel, S. R., & Choi, H. (2007). Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal. Environmental Science & Technology, 41(6), 2022–2027. doi: 10.1021/es0616534.CrossRefGoogle Scholar
  20. Gross, A. F., Sherman, E., & Vajo, J. J. (2012). Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks. Dalton Transactions, 41(18), 5458–5460. doi: 10.1039/C2DT30174A.CrossRefGoogle Scholar
  21. Han, R., Han, P., Cai, Z., Zhao, Z., & Tang, M. (2008). Kinetics and isotherms of Neutral Red adsorption on peanut husk. Journal of Environmental Sciences, 20(9), 1035–1041. doi: 10.1016/S1001-0742(08)62146-4.CrossRefGoogle Scholar
  22. Hartono, T., Wang, S., Ma, Q., & Zhu, Z. (2009). Layer structured graphite oxide as a novel adsorbent for humic acid removal from aqueous solution. Journal of Colloid and Interface Science, 333(1), 114–119. doi: 10.1016/j.jcis.2009.02.005.CrossRefGoogle Scholar
  23. Hasan, Z., & Jhung, S. H. (2015). Removal of hazardous organics from water using metal-organic frameworks (MOFs): plausible mechanisms for selective adsorptions. Journal of Hazardous Materials, 283, 329–339. doi: 10.1016/j.jhazmat.2014.09.046.CrossRefGoogle Scholar
  24. He, M., Yao, J., Liu, Q., Wang, K., Chen, F., & Wang, H. (2014). Facile synthesis of zeolitic imidazolate framework-8 from a concentrated aqueous solution. Microporous and Mesoporous Materials, 184, 55–60. doi: 10.1016/j.micromeso.2013.10.003.CrossRefGoogle Scholar
  25. Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34(5), 451–465. doi: 10.1016/S0032-9592(98)00112-5.CrossRefGoogle Scholar
  26. Horcajada, P., Chalati, T., Serre, C., Gillet, B., Sebrie, C., Baati, T., et al. (2010). Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat Mater, 9(2), 172–178, doi: 10.1038/nmat2608,
  27. Hu, Y., Kazemian, H., Rohani, S., Huang, Y., & Song, Y. (2011). In situ high pressure study of ZIF-8 by FTIR spectroscopy. Chemical Communications, 47(47), 12694–12696. doi: 10.1039/C1CC15525C.CrossRefGoogle Scholar
  28. Huat, B. B. K., Gue, S. S., & Ali, F. H. (2004). Tropical residual soils engineering. CRC Press, 377-403Google Scholar
  29. Hutson, N., & Yang, R. (1997). Theoretical basis for the Dubinin-Radushkevitch (D-R) adsorption isotherm equation. Adsorption, 3(3), 189–195. doi: 10.1007/BF01650130.CrossRefGoogle Scholar
  30. Hwang, L.-L., Chen, J.-C., & Wey, M.-Y. (2013). The properties and filtration efficiency of activated carbon polymer composite membranes for the removal of humic acid. Desalination, 313, 166–175. doi: 10.1016/j.desal.2012.12.019.CrossRefGoogle Scholar
  31. Imyim, A., & Prapalimrungsi, E. (2010). Humic acids removal from water by aminopropyl functionalized rice husk ash. Journal of Hazardous Materials, 184(1–3), 775–781. doi: 10.1016/j.jhazmat.2010.08.108.CrossRefGoogle Scholar
  32. Janiak, C., & Vieth, J. K. (2010). MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs). New Journal of Chemistry, 34(11), 2366–2388. doi: 10.1039/c0nj00275e.CrossRefGoogle Scholar
  33. Jiang, J.-Q., Yang, C.-X., & Yan, X.-P. (2013). Zeolitic imidazolate framework-8 for fast adsorption and removal of benzotriazoles from aqueous solution. ACS Applied Materials & Interfaces, 5(19), 9837–9842. doi: 10.1021/am403079n.CrossRefGoogle Scholar
  34. Jones, M. N., & Bryan, N. D. (1998). Colloidal properties of humic substances. Advances in Colloid and Interface Science, 78(1), 1–48. doi: 10.1016/S0001-8686(98)00058-X.CrossRefGoogle Scholar
  35. Jung, B. K., Hasan, Z., & Jhung, S. H. (2013). Adsorptive removal of 2,4-dichlorophenoxyacetic acid (2,4-D) from water with a metal–organic framework. Chemical Engineering Journal, 234, 99–105. doi: 10.1016/j.cej.2013.08.110.CrossRefGoogle Scholar
  36. Kang, X.-Z., Song, Z.-W., Shi, Q., & Dong, J.-X. (2013). Utilization of zeolite imidazolate framework as an adsorbent for the removal of dye from aqueous solution. Asian Journal of Chemistry, 25(15), 8324–8328.CrossRefGoogle Scholar
  37. Khan, N. A., Hasan, Z., & Jhung, S. H. (2013). Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review. Journal of Hazardous Materials, 244–245, 444–456. doi: 10.1016/j.jhazmat.2012.11.011.CrossRefGoogle Scholar
  38. Khan, N. A., Jung, B. K., Hasan, Z., & Jhung, S. H. (2015). Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal–organic frameworks. Journal of Hazardous Materials, 282, 194–200. doi: 10.1016/j.jhazmat.2014.03.047.CrossRefGoogle Scholar
  39. Khayet, M., & Mengual, J. I. (2004). Effect of salt concentration during the treatment of humic acid solutions by membrane distillation. Desalination, 168, 373–381. doi: 10.1016/j.desal.2004.07.023.CrossRefGoogle Scholar
  40. Kim, H.-C., Park, S.-J., Lee, C.-G., Han, Y.-U., Park, J.-A., & Kim, S.-B. (2009). Humic acid removal from water by iron-coated sand: a column experiment. Environmental Engineering Research, 14(1), 41–47. doi: 10.4491/eer.2009.14.1.41.CrossRefGoogle Scholar
  41. Koner, S., Pal, A., & Adak, A. (2010). Cationic surfactant adsorption on silica gel and its application for wastewater treatment. Desalination and Water Treatment, 22(1–3), 1–8. doi: 10.5004/dwt.2010.1465.CrossRefGoogle Scholar
  42. Kosaka, J., Honda, C., & Izeki, A. (1961). Fractionation of humic acid by organic solvents. Soil Science and Plant Nutrition, 7(2), 48–53. doi: 10.1080/00380768.1961.10430956.CrossRefGoogle Scholar
  43. Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens. Handlingar, 24(4), 1–39.Google Scholar
  44. Langmuir, I. (1916). The constitution and fundamental properties of solids and liquids. Part I. Solids. Journal of the American Chemical Society, 38(11), 2221–2295. doi: 10.1021/ja02268a002.CrossRefGoogle Scholar
  45. Lee, J., Farha, O. K., Roberts, J., Scheidt, K. A., Nguyen, S. T., & Hupp, J. T. (2009). Metal-organic framework materials as catalysts. Chemical Society Reviews, 38(5), 1450–1459. doi: 10.1039/B807080F.CrossRefGoogle Scholar
  46. Li, J.-R., Kuppler, R. J., & Zhou, H.-C. (2009). Selective gas adsorption and separation in metal-organic frameworks. Chemical Society Reviews, 38(5), 1477–1504. doi: 10.1039/B802426J.CrossRefGoogle Scholar
  47. Li, J.-R., Ma, Y., McCarthy, M. C., Sculley, J., Yu, J., Jeong, H.-K., et al. (2011). Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coordination Chemistry Reviews, 255(15–16), 1791–1823. doi: 10.1016/j.ccr.2011.02.012.CrossRefGoogle Scholar
  48. Liao, X.-P., & Shi, B. (2005). Adsorption of fluoride on zirconium(IV)-impregnated collagen fiber. Environmental Science & Technology, 39(12), 4628–4632. doi: 10.1021/es0479944.CrossRefGoogle Scholar
  49. Lin, J., Zhan, Y., & Zhu, Z. (2011). Adsorption characteristics of copper (II) ions from aqueous solution onto humic acid-immobilized surfactant-modified zeolite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 384(1–3), 9–16. doi: 10.1016/j.colsurfa.2011.02.044.CrossRefGoogle Scholar
  50. Lowe, J., & Hossain, M. M. (2008). Application of ultrafiltration membranes for removal of humic acid from drinking water. Desalination, 218(1–3), 343–354. doi: 10.1016/j.desal.2007.02.030.CrossRefGoogle Scholar
  51. Luo, P., Zhao, Y., Zhang, B., Liu, J., Yang, Y., & Liu, J. (2010). Study on the adsorption of Neutral Red from aqueous solution onto halloysite nanotubes. Water Research, 44(5), 1489–1497. doi: 10.1016/j.watres.2009.10.042.CrossRefGoogle Scholar
  52. Mall, I. D., Srivastava, V. C., Agarwal, N. K., & Mishra, I. M. (2005). Removal of Congo red from aqueous solution by bagasse fly ash and activated carbon: kinetic study and equilibrium isotherm analyses. Chemosphere, 61(4), 492–501. doi: 10.1016/j.chemosphere.2005.03.065.CrossRefGoogle Scholar
  53. Mueller, U., Schubert, M., Teich, F., Puetter, H., Schierle-Arndt, K., & Pastre, J. (2006). Metal-organic frameworks—prospective industrial applications. Journal of Materials Chemistry, 16(7), 626–636. doi: 10.1039/b511962f.CrossRefGoogle Scholar
  54. Ngah, W. S. W., & Musa, A. (1998). Adsorption of humic acid onto chitin and chitosan. Journal of Applied Polymer Science, 69(12), 2305–2310. doi: 10.1002/(SICI)1097-4628(19980919)69:12<2305::AID-APP1>3.0.CO;2-C.CrossRefGoogle Scholar
  55. Pan, Y., Liu, Y., Zeng, G., Zhao, L., & Lai, Z. (2011). Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chemical Communications, 47(7), 2071–2073. doi: 10.1039/C0CC05002D.CrossRefGoogle Scholar
  56. Park, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., et al. (2006). Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences, 103(27), 10186–10191. doi: 10.1073/pnas.0602439103.CrossRefGoogle Scholar
  57. Qiu, L.-G., Li, Z.-Q., Wu, Y., Wang, W., Xu, T., & Jiang, X. (2008). Facile synthesis of nanocrystals of a microporous metal-organic framework by an ultrasonic method and selective sensing of organoamines. Chemical Communications (31), 3642–3644, doi: 10.1039/B804126A.
  58. Rashed, M. N. (2013). Adsorption technique for the removal of organic pollutants from water and wastewater (organic pollutants—monitoring, risk and treatment).Google Scholar
  59. Schäfer, A. I., Fane, A. G., & Waite, T. D. (2000). Fouling effects on rejection in the membrane filtration of natural waters. Desalination, 131(1–3), 215–224. doi: 10.1016/S0011-9164(00)90020-1.CrossRefGoogle Scholar
  60. Schejn, A., Balan, L., Falk, V., Aranda, L., Medjahdi, G., & Schneider, R. (2014). Controlling ZIF-8 nano- and microcrystal formation and reactivity through zinc salt variations. CrystEngComm, 16(21), 4493–4500. doi: 10.1039/C3CE42485E.CrossRefGoogle Scholar
  61. Stock, N., & Biswas, S. (2011). Synthesis of metal-organic frameworks (MOFs): routes to various MOF topologies, morphologies, and composites. Chemical Reviews, 112(2), 933–969. doi: 10.1021/cr200304e.CrossRefGoogle Scholar
  62. Stone, A. T., & Morgan, J. J. (1984). Reduction and dissolution of manganese(III) and manganese(IV) oxides by organics: 2. Survey of the reactivity of organics. Environmental Science & Technology, 18(8), 617–624. doi: 10.1021/es00126a010.CrossRefGoogle Scholar
  63. Subbiah, D., & Mishra, A. K. (2009). Humic acid–cetyltrimethylammonium bromide interaction: a fluorimetric study. Luminescence, 24(2), 84–89. doi: 10.1002/bio.1069.CrossRefGoogle Scholar
  64. Tatsi, A. A., & Zouboulis, A. I. (2002). Production, composition and temporal variation of pollution parameters for sanitary landfill leachates. Advances in Environmental Research, 6, 207–219.CrossRefGoogle Scholar
  65. Temkin, M. I., & Pyzhev, V. (1940). Kinetics of ammonia synthesis on promoted iron catalyst. Acta Physicochimica U.R.S.S., 12, 327–356.Google Scholar
  66. Tsai, Y. P., Doong, R. A., Yang, J. C., Chuang, P. C., Chou, C. C., & Lin, J. W. (2013). Removal of humic acids in water by carbon nanotubes. Advanced Materials Research, 747, 221–224.CrossRefGoogle Scholar
  67. Wang, S., & Zhu, Z. H. (2007). Humic acid adsorption on fly ash and its derived unburned carbon. Journal of Colloid and Interface Science, 315(1), 41–46. doi: 10.1016/j.jcis.2007.06.034.CrossRefGoogle Scholar
  68. Wang, M., Liao, L., Zhang, X., & Li, Z. (2012). Adsorption of low concentration humic acid from water by palygorskite. Applied Clay Science, 67–68, 164–168. doi: 10.1016/j.clay.2011.09.012.CrossRefGoogle Scholar
  69. Wang, F., Yao, J., Chen, H., Yi, Z., & Xing, B. (2013). Sorption of humic acid to functionalized multi-walled carbon nanotubes. Environmental Pollution, 180, 1–6. doi: 10.1016/j.envpol.2013.04.035.CrossRefGoogle Scholar
  70. Watanabe, A., & Kuwatsuka, S. (1992). Ethanol-soluble and insoluble fractions of humic substances in soil fulvic acids. Soil Science and Plant Nutrition, 38(3), 391–399. doi: 10.1080/00380768.1992.10415071.CrossRefGoogle Scholar
  71. Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division, 89(2), 31–60.Google Scholar
  72. Wu, F.-C., Tseng, R.-L., & Juang, R.-S. (2001). Kinetic modeling of liquid-phase adsorption of reactive dyes and metal ions on chitosan. Water Research, 35(3), 613–618. doi: 10.1016/S0043-1354(00)00307-9.CrossRefGoogle Scholar
  73. Wu, F.-C., Tseng, R.-L., & Juang, R.-S. (2002). Adsorption of dyes and humic acid from water using chitosan-encapsulated activated carbon. Journal of Chemical Technology & Biotechnology, 77(11), 1269–1279. doi: 10.1002/jctb.705.CrossRefGoogle Scholar
  74. Yao, J., Chen, R., Wang, K., & Wang, H. (2013). Direct synthesis of zeolitic imidazolate framework-8/chitosan composites in chitosan hydrogels. Microporous and Mesoporous Materials, 165, 200–204. doi: 10.1016/j.micromeso.2012.08.018.CrossRefGoogle Scholar
  75. Yoon, J. W., Jhung, S. H., Hwang, Y. K., Humphrey, S. M., Wood, P. T., & Chang, J. S. (2007). Gas-sorption selectivity of CUK-1: a porous coordination solid made of cobalt(II) and pyridine-2,4- dicarboxylic acid. Advanced Materials, 19(14), 1830–1834. doi: 10.1002/adma.200601983.CrossRefGoogle Scholar
  76. Yu, X., Zhang, G., Xie, C., Yu, Y., Cheng, T., & Zhou, Q. (2011). Equilibrium, kinetic, and thermodynamic studies of hazardous dye neutral red biosorption by spent corncob substrate. BioResources, 6(2), 936–949.Google Scholar
  77. Zouboulis, A. I., Jun, W., & Katsoyiannis, I. A. (2003). Removal of humic acids by flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 231(1–3), 181–193. doi: 10.1016/j.colsurfa.2003.09.004.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Environmental EngineeringNational Chung Hsing UniversityTaichungRepublic of China

Personalised recommendations