Water, Air, & Soil Pollution

, 226:18 | Cite as

Spatial and Temporal Migration of a Landfill Leachate Plume in Alluvium

  • Jason R. MasonerEmail author
  • Isabelle M. Cozzarelli


Leachate from unlined or leaky landfills can create groundwater contaminant plumes that last decades to centuries. Understanding the dynamics of leachate movement in space and time is essential for monitoring, planning and management, and assessment of risk to groundwater and surface-water resources. Over a 23.4-year period (1986–2010), the spatial extent of the Norman Landfill leachate plume increased at a rate of 7800 m2/year and expanded by 878 %, from an area of 20,800 m2 in 1986 to 203,400 m2 in 2010. A linear plume velocity of 40.2 m/year was calculated that compared favorably to a groundwater-seepage velocity of 55.2 m/year. Plume-scale hydraulic conductivity values representative of actual hydrogeological conditions in the alluvium ranged from 7.0 × 10−5 to 7.5 × 10−4 m/s, with a median of 2.0 × 10−4 m/s. Analyses of field-measured and calculated plume-scale hydraulic conductivity distributions indicate that the upper percentiles of field-measured values should be considered to assess rates of plume-scale migration, spreading, and biodegradation. A pattern of increasing Cl concentrations during dry periods and decreasing Cl concentrations during wet periods was observed in groundwater beneath the landfill. The opposite occurred in groundwater downgradient from the landfill; that is, Cl concentrations in groundwater downgradient from the landfill decreased during dry periods and increased during wet periods. This pattern of changing Cl concentrations in response to wet and dry periods indicates that the landfill retains or absorbs leachate during dry periods and produces lower concentrated leachate downgradient. During wet periods, the landfill receives more recharge which dilutes leachate in the landfill but increases leachate migration from the landfill and produces a more concentrated contaminant plume. This approach of quantifying plume expansion, migration, and concentration during variable hydrologic conditions provides increased understanding of plume behavior and migration potential and may be applied at less monitored landfill sites to evaluate potential risks of contamination to downgradient receptors.


Landfills Plumes Contaminant transport Temporal Migration Groundwater contamination 



This project was supported by the USGS Toxic Substances Hydrology Program and National Research Program. Appreciation is extended to Kevin A. Smith and Jeanne B. Jaeschke of the USGS for their assistance with well installation, sampling, and data analysis. The authors also thank Dr. Stanley T. Paxton, Dr. William Andrews, and Jerrod Smith for their reviews of this paper. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government.


  1. Andrews, D. M., Lin, H., Zhu, Q., Jin, L., & Brantley, S. (2011). Hot spots and hot moments of dissolved organic carbon export and soil organic carbon storage in the shale hills catchment. Vadose Zone Journal, 10, 943–954.CrossRefGoogle Scholar
  2. Andrews, W. J., Masoner, J. R., & Cozzarelli, I. M. (2012). Emerging contaminants at a closed and an operating landfill in Oklahoma. Ground Water Monitoring & Remediation, 32, 120–130.CrossRefGoogle Scholar
  3. Arora, B., Mohanty, B. P., McGuire, J. T., & Cozzarelli, I. M. (2013). Temporal dynamics of biogeochemical processes at the Norman landfill site. Water Resources Research, 49, 6909–6926.CrossRefGoogle Scholar
  4. Báez-Cazull, S. B., McGuire, J. T., Cozzarelli, I. M., Raymond, A., & Welsh, L. (2007). Centimeter-scale characterization of biogeochemical gradients at a wetland-aquifer interface using capillary electrophoresis. Applied Geochemistry, 22, 2664–2683.CrossRefGoogle Scholar
  5. Barnes, K. K., Christenson, S. C., Kolpin, D. W., Focazio, M. J., Furlong, E. T., Zaugg, S. D., et al. (2004). Pharmaceuticals and other organic waste water contaminants within a leachate plume downgradient of a municipal landfill. Ground Water Monitoring and Remediation, 29, 119–126.CrossRefGoogle Scholar
  6. Becker, C. J. (2002). Hydrogeology and leachate plume delineation at a closed municipal landfill, Norman, Oklahoma. Oklahoma City: U.S. Geological Scientific Investigations Report 01-4168, 36.Google Scholar
  7. Bjerg, P. L., Tuxen, N., Reitzel, L. A., Albrechtsen, H.-J., & Kjeldsen, P. (2011). Natural attenuation processes in landfill leachate plumes at three Danish sites. Ground Water, 49, 688–705.CrossRefGoogle Scholar
  8. Bjerg, P. L., Albrechtsen, H.-J., Kjeldsen, P., Christensen, T. H., & Cozzarelli, I. M. (2014). The biogeochemistry of contaminant groundwater plumes arising from waste disposal facilities. In H. D. Holland & K. K. Turekian (Eds.), Treatise on geochemistry (2nd ed., pp. 573–605). Oxford: Elsevier.CrossRefGoogle Scholar
  9. Breit, G. N., Tuttle, M. L. W., Cozzarelli, I. M., Christenson, S. C., Jaeschke, J. B., Fey, D. L., et al. (2005). Results of the chemical and isotopic analyses of sediment and water from alluvium of the Canadian River near a closed municipal landfill, Norman, Oklahoma. Reston: U.S. Geological Survey Open-file Report 2005-1091, 43.Google Scholar
  10. Buszka, P. M., Yeskis, D. J., Kolpin, D. W., Furlong, E. T., Zaugg, S. D., & Meyer, M. T. (2009). Waste-indicator and pharmaceutical compounds in landfill-leachate-affected ground water near Elkhart, Indiana, 2000–2002. Bulletin of Environmental Contamination and Toxicology, 82, 653–659.CrossRefGoogle Scholar
  11. Christensen, T. H., Kjeldsen, P., Albrechtsen, H.-J., Heron, G., Nielsen, P. H., Bjerg, P. L., et al. (1994). Attenuation of landfill leachate pollutants in aquifers. Critical Review in Environmental Science and Technology, 24(2), 119–202.CrossRefGoogle Scholar
  12. Chu, L. M., Cheung, K. C., & Wong, M. H. (1994). Variations in the chemical properties of landfill leachate. Environmental Management, 18, 105–117.CrossRefGoogle Scholar
  13. Collins, K.L. (2001). Permeability pathways in the Canadian River alluvium adjacent to the Norman Landfill, Norman, Oklahoma: Stillwater, Okla., Oklahoma State University, unpublished Masters Thesis, 206.Google Scholar
  14. Cozzarelli, I. M., Böhlke, J. K., Masoner, J. R., Breit, G. N., Lorah, M. M., Tuttle, M. L. W., et al. (2011). Biogeochemical evolution of a landfill leachate plume, Norman, Oklahoma. Ground Water, 49, 663–687.CrossRefGoogle Scholar
  15. Curtis, J. A., & Whitney, J. W. (2003). Geomorphic and hydrologic assessment of erosion hazards at the Norman municipal landfill, Canadian River floodplain, central Oklahoma. Environmental & Engineering Geoscience, 9, 241–252.CrossRefGoogle Scholar
  16. Dixon, K.K. (1992). Oklahoma State Department of Health: preliminary assessment (PA) report for the old Norman landfill: submitted to USEPA Region VI, February 27, 1992: Oklahoma State Department of Health and Solid Waste Management Service Technical Programs Branch, Superfund Section PA/SSI staff, 23, plus attachments.Google Scholar
  17. Eganhouse, R. P., Cozzarelli, I. M., Scholl, M. A., & Matthews, L. L. (2001). Natural attenuation of volatile organic compounds (VOCs) in the leachate plume of a municipal landfill: using alkylbenzenes as a process probe. Ground Water, 39, 192–202.CrossRefGoogle Scholar
  18. Freyberg, D. L. (1986). A natural gradient experiment on solute transport in a sand aquifer: 2. Spatial moments and the advection and dispersion of nonreactive tracers. Water Resources Research, 13, 2031–2046.CrossRefGoogle Scholar
  19. Harris, G. R., Garlock, C., LeSeur, L., Mesinger, S., & Wexler, R. (1982). Groundwater from industrial waste disposal: a case study. Journal of Environment and Health, 44, 287–295.Google Scholar
  20. Jaeschke, J. B., Scholl, M. A., Cozzarelli, I. M., Masoner, J. R., Christenson, S. C., & Qi, H. (2011). Stable-isotope ratios of hydrogen and oxygen in precipitation at Norman, Oklahoma, 1996–2008. Oklahoma City: U.S. Geological Scientific Investigations Report 2011-5262, 12.Google Scholar
  21. Kjeldsen, P., Bjerg, P. L., Pedersen, J. K., Rügge, K., & Christensen, T. H. (1998). Characterization of an old municipal landfill (Grindsted, Denmark) as a ground water pollution source: landfill hydrology and leachate migration. Waste Management and Research, 16, 14–22.CrossRefGoogle Scholar
  22. Lorah, M. M., Cozzarelli, I. M., & Böhlke, J. K. (2009). Biogeochemistry at a wetland sediment-alluvial aquifer interface in a landfill leachate plume. Journal of Contaminant Hydrology, 105, 99–117.CrossRefGoogle Scholar
  23. Masoner, J. R., Stannard, D. I., & Christenson, S. C. (2008). Differences in evaporation between a floating pan and class a pan on land. Journal of the American Water Resources Association, 44, 552–561.CrossRefGoogle Scholar
  24. Masoner, J. R., Kolpin, D. W., Furlong, E. T., Cozzarelli, I. M., Gray, J. L., & Schwab, E. A. (2014). Contaminants of emerging concern in fresh leachate from landfills in the conterminous United States. Environmental Science: Processes & Impacts, 16, 2335–2354.Google Scholar
  25. Mendoza-Sanchez, I., Phanikumar, M. S., Niu, J., Masoner, J. R., Cozzarelli, I. M., & McGuire, J. T. (2013). Quantifying wetland-aquifer interactions in a humid subtropical climate region: an integrated approach. Journal of Hydrology, 498, 237–253.CrossRefGoogle Scholar
  26. Oklahoma Climatological Survey. (2011). Daily time series using cooperative observer (COOP) data: accessed June 8, 2011, at
  27. Pearson, K. (1900). On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philosophical Magazine Series, 5(50), 157–175.CrossRefGoogle Scholar
  28. Schlottmann, J. L. (2001). Water chemistry near the closed Norman Landfill, Cleveland County, Oklahoma, 1995. Oklahoma City: U.S. Geological Survey Scientific Investigations Report 00-4238, 44.Google Scholar
  29. Scholl, M. A. (2000). Effects of heterogeneity in aquifer permeability and biomass on biodegradation rate calculations—results from numerical simulations. Ground Water, 38, 702–712.CrossRefGoogle Scholar
  30. Scholl, M. A., & Christenson, S. C. (1998). Spatial variation in hydraulic conductivity determined by slug tests in the Canadian River alluvium near the Norman Landfill, Norman, Oklahoma. Oklahoma City: U.S. Geological Survey Water-Resources Investigations Report 97-4292, 28.Google Scholar
  31. Scholl, M. A., Christenson, S. C., Cozzarelli, I. M., Ferree, D. M., & Jaeschke, J. (2004). Recharge processes in an alluvial aquifer riparian zone, Norman Landfill, Norman, Oklahoma, 1998–2000. Oklahoma City: U.S. Geological Survey Scientific Investigations Report 2004-5238, 54.Google Scholar
  32. Singha, K., & Gorelick, S. M. (2005). Saline tracer visualized with three-dimensional electrical resistivity tomography: field-scale spatial moment analysis. Water Resources Research, 41, W05023. doi: 10.1029/2004/WR003460.CrossRefGoogle Scholar
  33. Statom, R. A., Thyne, G. D., & McCray, J. E. (2004). Temporal changes in leachate chemistry of a municipal solid waste landfill cell in Florida, USA. Environmental Geology, 45, 982–991.CrossRefGoogle Scholar
  34. Sudicky, E. A., Illman, W. A., Goltz, I. K., Adams, J. J., & McLaren, R. G. (2010). Heterogeneity in hydraulic conductivity and its role on the macroscale transport of a solute plume: from measurements to a practical application of stochastic flow and transport theory. Water Resources Research, 46, W01508. doi: 10.1029/2008WR007558.CrossRefGoogle Scholar
  35. Suflita, J. M., Gerba, C. P., Ham, R. K., Palmisano, A. C., Rathje, W. L., & Robinson, J. A. (1992). The world’s largest landfill. Environmental Science & Technology, 26, 1486–1495.CrossRefGoogle Scholar
  36. Thomsen, N. I., Milosevic, N., & Bjerg, P. L. (2012). Application of a mass balance method at an old landfill to assess the impact on surrounding water resources. Waste Management, 32, 2406–2417.CrossRefGoogle Scholar
  37. U.S. Environmental Protection Agency (USEPA). (2010). Municipal solid waste in the United States: 2009 facts and figures. USEPA Office of Solid Waste EPA530-R-10-0126. (accessed January 12, 2013).
  38. Van Breukelen, B. M., & Griffioen, J. (2004). Biogeochemical processes at the fringe of a landfill leachate pollution plume: potential for dissolved organic carbon, Fe(II), Mn(II), NH4, and CH4 oxidation. Journal of Contaminant Hydrology, 73, 181–205.CrossRefGoogle Scholar
  39. Vidon, P., Allan, C., Burns, D., Duval, T. P., Gurwick, N., Inamdar, S., et al. (2010). Hot spots and hot moments in riparian zones: potential for improved water quality management. Journal of the American Water Resources Association, 46, 278–298.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Water Mission Area, U.S. Geological SurveyOklahoma CityUSA
  2. 2.Water Mission Area, U.S. Geological SurveyRestonUSA

Personalised recommendations