Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Characterization of Cr Sorption and Reduction on TiO2: Batch and XPS Studies

  • 304 Accesses

  • 1 Citations


Cr interactions with TiO2 were systematically studied using batch and spectroscopic investigations. Sorption of chromium on TiO2 at pH 4.5 increases with increasing Cr concentration. The sorption of Cr(III) is in good agreement with Langmuir isotherm model, whereas that of Cr(VI) is better accounted for by the Freundlich model. At pH 7.0, however, the uptake of Cr(III) by TiO2 is over 95 %, while the extent of Cr(VI) sorption on TiO2 is much less than that of pH 4.5. These results are consistent with SEM observations showing that precipitates of Cr(III) are dominant under neutral pH. The sorption of Cr(VI) on TiO2 decreases with increasing pH. However, Cr(VI) sorption decreases with increasing ionic strength below pH 4.5 whereas the sorption increases with ionic strength above pH 4.5. These observations suggest that Cr(VI) sorption is sensitive to ionic strength, and Cr(VI) could form weakly bound adsorption complexes at the TiO2–water interface. Phosphate competes with Cr(VI) for TiO2 surface sites during sorption processes, and Cr(VI) desorption accelerates and increases in the presence of phosphate. It is noted that the reduction of Cr(VI) is induced by sunlight on the TiO2 surface, but not detected in acidic solution throughout batch experiments at pH ≥ 4.5 for 24 h.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. Arai, Y., & Sparks, D. L. (2001). ATR–FTIR spectroscopic investigation on phosphate adsorption mechanisms at the Ferrihydrite–water interface. Journal of Colloid and Interface Science, 241(2), 317.

  2. Archundia, C., Bonato, P. S., Lugo Rivera, J. F., Mascioli, L. C., Collins, K. E., & Collins, C. H. (1993). Reduction of low concentration Cr(VI) in acid solutions. Science of the Total Environment, 130–131, 231–236.

  3. Barrow, N. J. (1987). The effects of phosphate on zinc sorption by a soil. Journal of Soil Science, 38(3), 453–459.

  4. Buerge, I. J., & Hug, S. J. (1999). Influence of mineral surfaces on chromium (VI) reduction by iron (II). Environmental Science & Technology, 33(23), 4285–4291.

  5. Connor, P. A., & McQuillan, A. J. (1999). Phosphate adsorption onto TiO2 from aqueous solutions: An in situ internal reflection infrared spectroscopic study. Langmuir, 15(8), 2916–2921.

  6. Csobán, K., Párkányi-Berka, M., Joó, P., & Behra, P. (1998). Sorption experiments of Cr (III) onto silica. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 141(3), 347–364.

  7. Dixit, S., & Hering, J. G. (2003). Comparison of arsenic (V) and arsenic (III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environmental Science & Technology, 37(18), 4182–4189.

  8. Dupont, L., & Guillon, E. (2003). Removal of hexavalent chromium with a lignocellulosic substrate extracted from wheat bran. Environmental Science & Technology, 37(18), 4235.

  9. Fu, H., Lu, G., & Li, S. (1999). Kinetic and mechanism study on photocatalytic detoxification of Cr(VI) ions on TiO2 catalyst. Toxicological & Environmental Chemistry, 70(3–4), 333–347.

  10. García González, M. L., Martinez Chaparro, A., & Salvador, P. (1993). Photoelectrochemical study of the TiO2 Cr system. Observation of strong (001) rutile photoetching in the presence of Cr(VI). Journal of Photochemistry and Photobiology, A: Chemistry, 73(3), 221–231.

  11. Ghasemi, Z., Seif, A., Ahmadi, T. S., Zargar, B., Rashidi, F., & Rouzbahani, G. M. (2012). Thermodynamic and kinetic studies for the adsorption of Hg(II) by nano-TiO2 from aqueous solution. Advanced Powder Technology, 23(2), 148.

  12. Hayes, K. F., Papelis, C., & Leckie, J. O. (1988). Modeling ionic strength effects on anion adsorption at hydrous oxide/solution interfaces. Journal of Colloid and Interface Science, 125(2), 717.

  13. Hu, J., Chen, C., Zhu, X., & Wang, X. (2009). Removal of chromium from aqueous solution by using oxidized multiwalled carbon nanotubes. Journal of Hazardous Materials, 162(2–3), 1542.

  14. Jegadeesan, G., Al-Abed, S. R., Sundaram, V., Choi, H., Scheckel, K. G., & Dionysiou, D. D. (2010). Arsenic sorption on TiO2 nanoparticles: Size and crystallinity effects. Water Research, 44(3), 965.

  15. Kang, S. A., Li, W., Lee, H. E., Phillips, B. L., & Lee, Y. J. (2011). Phosphate uptake by TiO2: Batch studies and NMR spectroscopic evidence for multisite adsorption. Journal of Colloid and Interface Science, 364(2), 455–461.

  16. Kanna, M., Wongnawa, S., & Sherdshoopongse, P. P. B. (2005). Adsorption behavior of some metal ions on hydrated amorphous titanium dioxide surface. Adsorption, 27(5), 1018.

  17. Kim, K.-R., Lee, S.-H., Paek, S.-W., Chung, H., & Yoo, J.-H. (1999). Adsorption of cobalt (II) ion by titanium-based oxides in high temperature water. Korean Journal of Chemical Engineering, 16(7), 34.

  18. Krishna, B. S., Murty, D. S. R., & Jai Prakash, B. S. (2000). Thermodynamics of chromium (VI) anionic species sorption onto surfactant-modified montmorillonite clay. Journal of Colloid and Interface Science, 229(1), 230–236.

  19. Kryukova, G. N., Zenkovets, G. A., Shutilov, A. A., Wilde, M., Uumlnther, K., Fassler, D., & Richter, K. (2007). Structural peculiarities of TiO2 and Pt/TiO2 catalysts for the photocatalytic oxidation of aqueous solution of Acid Orange 7 Dye upon ultraviolet light. Applied Catalysis B: Environmental, 71(3–4), 169.

  20. Lee, H., & Choi, W. (2002). Photocatalytic oxidation of arsenite in TiO2 suspension: Kinetics and mechanisms. Environmental Science & Technology, 36(17), 3872–3878.

  21. Li, G., & Gray, K. A. (2007). The solid–solid interface: Explaining the high and unique photocatalytic reactivity of TiO2-based nanocomposite materials. Chemical Physics, 339(1), 173.

  22. Li, B., Pan, D., Zheng, J., Cheng, Y., Ma, X., Huang, F., & Lin, Z. (2008). Microscopic investigations of the Cr(VI) uptake mechanism of living Ochrobactrum anthropi. Langmuir, 24(17), 9630–9635.

  23. Liang, P., Ding, Q., & Liu, Y. (2006). Speciation of chromium by selective separation and preconcentration of Cr(III) on an immobilized nanometer titanium dioxide microcolumn. Journal of Separation Science, 29(2), 242.

  24. Linsebigler, A. L., Lu, G., & Yates, J. T. (1995). Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chemical Reviews, 95(3), 735.

  25. Liu, G., Zhang, X., McWilliams, L., Talley, J. W., & Neal, C. R. (2008). Influence of ionic strength, electrolyte type, and NOM on As(V) adsorption onto TiO2. Journal of Environmental Science and Health, Part A, 43(4), 430.

  26. Maurice. (2008). Environmental surfaces and interfaces from the nanoscale to the global scale. Hoboken: Wiley.

  27. Mor, S., Ravindra, K., Bishnoi, N. R., & Bishnoi, N. (2007). Adsorption of chromium from aqueous solution by activated alumina and activated charcoal. Bioresource Technology, 98(4), 954.

  28. Pena, M. E., Korfiatis, G. P., Patel, M., Lippincott, L., & Meng, X. (2005). Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide. Water Research, 39(11), 2327.

  29. Pérez-Novo, C., Bermúdez-Couso, A., López-Periago, E., Fernández-Calviño, D., & Arias-Estévez, M. (2011). Zinc adsorption in acid soils: Influence of phosphate. Geoderma, 162(3–4), 358–364.

  30. Rai, D., Sass, B. M., & Moore, D. A. (1987). Chromium(III) hydrolysis constants and solubility of chromium (III) hydroxide. Inorganic Chemistry, 26(3), 345–349.

  31. Rai, D., Eary, L. E., & Zachara, J. M. (1989). Environmental chemistry of chromium. Science of the Total Environment, 86(1), 15.

  32. Rajurkar, N. S., Gokarn, A. N., & Dimya, K. (2011). Adsorption of chromium (III), nickel (II), and copper (II) from aqueous solution by activated alumina. CLEAN – Soil, AirWater, 39(8), 767–773.

  33. Richard, F. C., & Bourg, A. C. M. (1991). Aqueous geochemistry of chromium: A review. Water Research, 25(7), 807–816.

  34. Shi, K., Wang, X., Guo, Z., Wang, S., & Wu, W. (2009). Se (IV) sorption on TiO2: Sorption kinetics and surface complexation modeling. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 349(1), 90.

  35. Sperling, M., Xu, S., & Welz, B. (1992). Determination of chromium (III) and chromium (VI) in water using flow injection on-line preconcentration with selective adsorption on activated alumina and flame atomic absorption spectrometric detection. Analytical Chemistry, 64(24), 3101–3108.

  36. Sposito, G. (1984). The surface chemistry of soils. New York: Oxford Univ. Press.

  37. Sun, B., Reddy, E. P., & Smirniotis, P. G. (2005). Visible light Cr (VI) reduction and organic chemical oxidation by TiO2 photocatalysis. Environmental Science & Technology, 39(16), 6251–6259.

  38. Tang, Y., Elzinga, E. J., Jae Lee, Y., & Reeder, R. J. (2007). Coprecipitation of chromate with calcite: Batch experiments and X-ray absorption spectroscopy. Geochimica et Cosmochimica Acta, 71(6), 1480–1493.

  39. Tel, H., Altaş, Y., & Taner, M. S. (2004). Adsorption characteristics and separation of Cr (III) and Cr (VI) on hydrous titanium (IV) oxide. Journal of Hazardous Materials, 112(3), 225–231.

  40. Tzou, Y. M., Wang, M. K., & Loeppert, R. H. (2003). Sorption of phosphate and Cr (VI) by Fe (III) and Cr (III) hydroxides. Archives of Environmental Contamination and Toxicology, 44(4), 0445–0453.

  41. Villalobos, M., Trotz, M. A., & Leckie, J. O. (2001). Surface complexation modeling of carbonate effects on the adsorption of Cr (VI), Pb (II), and U (VI) on goethite. Environmental Science & Technology, 35(19), 3849–3856.

  42. Wang, L., Wang, N., Zhu, L., Yu, H., & Tang, H. (2008). Photocatalytic reduction of Cr (VI) over different TiO2 photocatalysts and the effects of dissolved organic species. Journal of Hazardous Materials, 152(1), 93.

  43. Weng, C. H., Wang, J. H., & Huang, C. P. (1997). Adsorption of Cr (VI) onto TiO2 from dilute aqueous solutions. Water Science and Technology, 35(7), 55–62.

  44. Wu, X.-W., Ma, H.-W., & Zhang, Y.-R. (2010). Adsorption of chromium (VI) from aqueous solution by a mesoporous aluminosilicate synthesized from microcline. Applied Clay Science, 48(3), 538–541.

  45. Yang, J.-K., & Lee, S.-M. (2006). Removal of Cr (VI) and humic acid by using TiO2 photocatalysis. Chemosphere, 63(10), 1677–1684.

  46. Yu, J. C., Wu, X. J., & Chen, Z. (2001). Separation and determination of Cr (III) by titanium dioxide-filled column and inductively coupled plasma mass spectrometry. Analytica Chimica Acta, 436(1), 59–67.

  47. Zhang, L., Liu, N., Yang, L., & Lin, Q. (2009). Sorption behavior of nano-TiO2 for the removal of selenium ions from aqueous solution. Journal of Hazardous Materials, 170(2), 1197.

Download references


This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (2011-0010785 and 2014R1A2A2A01007294).

Author information

Correspondence to Young Jae Lee.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Doan, D.H., Kim, Y.J., Nguyen, T.M. et al. Characterization of Cr Sorption and Reduction on TiO2: Batch and XPS Studies. Water Air Soil Pollut 226, 2252 (2015). https://doi.org/10.1007/s11270-014-2252-y

Download citation


  • Chromium
  • Titanium dioxide
  • Sorption
  • Reduction
  • Phosphate