Advertisement

Water, Air, & Soil Pollution

, 226:2240 | Cite as

The Influence of Oceanic Air Masses on Concentration of Major Ions and Trace Metals in PM2.5 Fraction at a Coastal European Suburban Site

  • Jorge Moreda-PiñeiroEmail author
  • Isabel Turnes-Carou
  • Elia Alonso-Rodríguez
  • Carmen Moscoso-Pérez
  • Gustavo Blanco-Heras
  • Purificación López-Mahía
  • Soledad Muniategui-Lorenzo
  • Darío Prada-Rodríguez
Article

Abstract

A comprehensive chemical characterisation of the ionic and metallic composition of PM2.5 fraction of suburban aerosol collected with high‐volume aerosol samplers at a coastal suburban site of northwest Atlantic European is studied over a 1.5-year period (from March 2011 to August 2012). The monthly mean PM2.5 mass concentrations (after gravimetric measurement) ranged from 13 to 26 μg m−3. Eighteen samples, which provide information pertaining to the monthly variation in chemistry, were analyzed. Trace metals (Al, As, Ba, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, V and Zn) were analysed in PM2.5 fraction after acid extraction (total metallic concentration) and after sonication-assisted water extraction (aqueous soluble fraction). Major inorganic ions (Cl, NO3 , SO4 2−, Na+, K+, Ca2+, Mg2+, NH4 + and C2O4 2−) were also analysed in the aqueous fraction of PM2.5. Trace metal extractability in water was in the range 50–67 % with exception of Al (∼2 %), Fe (∼4 %) and Cr (∼18 %). After univariate, cluster (CA) and principal component (PCA) analyses and air mass backward trajectory analysis, marine, crustal and anthropogenic (including road traffic) sources were found for the inorganic composition of PM2.5. Results also suggest a great influence of cleaner Atlantic air masses and ubiquitous sources for K+, Mg2+, Fe, Ni and V.

Keywords

Atmospheric particulate matter Chemical composition Major ions and trace metals Sources contributions Suburban site 

Notes

Acknowledgments

This work has been supported by the Dirección Xeral de Desevolvemento e innovación (reference 10MSD 164019PR), Ministerio de Ciencia y Innovación (Plan Nacional I+D+I 2008–2011, reference CGL2010-18145) and Program of Consolidation and Structuring of Units of Competitive Investigation of the University System of Galicia (Xunta de Galicia) potentially cofounded by ERDF in the frame of the operative Program of Galicia 2007–2013 (reference GRC2013-047). We are grateful to Alicia María Cantarero-Roldán (Servicios Xerais de Apoio a Investigación at the University of A Coruña) for ICP-MS technical support.

References

  1. Almeida, S. M., Pio, C. A., Freitas, M. C., Reis, M. A., & Trancoso, M. A. (2005). Source apportionment of fine and coarse particulate matter in a sub-urban area at the Western European Coast. Atmospheric Environment, 39, 3127–3138.CrossRefGoogle Scholar
  2. Almeida, S. M., Pio, C. A., Freitas, M. C., Reis, M. A., & Trancoso, M. A. (2006). Approaching PM2.5 and PM2.5–10 source apportionment by mass balance analysis, principal component analysis and particle size distribution. Science of the Total Environment, 368, 663–674.CrossRefGoogle Scholar
  3. Arruti, A., Fernández-Olmo, I., & Irabien, A. (2010). Evaluation of the contribution of local sources to trace metals levels in urban PM2.5 and PM10 in the Cantabria region (Northern Spain). Journal of Environmental Monitoring, 12, 1451–1458.CrossRefGoogle Scholar
  4. Burden, F. R., McKelvie, I., Förstner, U., Guenther, A. (2002) Environmental monitoring handbook. New York: McGraw-Hill, p. 10.10.Google Scholar
  5. Cheung, K., Daher, N., Kam, W., Shafer, M. M., Ning, Z., Schauer, J. J., & Sioutas, C. (2011). Spatial and temporal variation of chemical composition and mass closure of ambient coarse particulate matter (PM10-2.5) in the Los Angeles area. Atmospheric Environment, 45, 2651–2662.CrossRefGoogle Scholar
  6. Daher, N., Ruprecht, A., Invernizzi, G., De Marco, C., Miller-Schulze, J., Heo, J. B., Shafer, M. M., Shelton, B. R., Schauer, J. J., & Sioutas, C. (2012). Characterization, sources and redox activity of fine and coarse particulate matter in Milan, Italy. Atmospheric Environment, 49, 130–141.CrossRefGoogle Scholar
  7. Desboeufs, K. V., Sofikitis, A., Losno, R., Colin, J. L., & Ausset, P. (2005). Dissolution and solubility of trace metals from natural and anthropogenic aerosol particulate matter. Chemosphere, 58, 195–203.CrossRefGoogle Scholar
  8. Draxler, R. R., & Rolph, G. D. (2003). HYSPLIT (HYbrid single-particle lagrangian integrated trajectory) model access via NOAA ARL READY website. Silver Spring: NOAA Air Resources Laboratory.Google Scholar
  9. Engelbrecht, J. P., Menéndez, I., & Derbyshire, E. (2014). Sources of PM2.5 impacting on Gran Canaria, Spain. Catena, 117, 119–132.CrossRefGoogle Scholar
  10. European standard EN12341. (1998). Air quality—determination of the PM10 particulate matter—reference method and field test procedure to demonstrate reference equivalence of measurement methods.Google Scholar
  11. Farinha, M. M., Almeida, S. M., Freitas, M. C., Verburg, T. G., & Wolterbeek, H. T. (2009). Local and regional sources of air pollutants at Northern Lisbon area, Portugal. Applied Radiation and Isotopes, 67, 2137–2141.CrossRefGoogle Scholar
  12. Freitas, M. C., Farinha, M. M., Ventura, M. G., Almeida, S. M., Reis, M. A., & Pacheco, A. M. G. (2005). Gravimetric and chemical features of airborne PM10 and PM2.5 in mainland Portugal. Environmental Monitoring Assessment, 109, 81–95.CrossRefGoogle Scholar
  13. Gao, Y., Arimoto, R., Duce, R. A., Lee, D. S., & Zhou, M. Y. (1992). Input of atmospheric trace elements and mineral matter to the Yellow Sea during the spring of a low dust year. Journal of Geophysical Research, 97(D4), 3767–3777.CrossRefGoogle Scholar
  14. Gupta, A., Kumar, R., Kumari, K. M., & Srivastava, S. S. (2003). Measurement of NO2, HNO3, NH3 and SO2 and related particulate matter at a rural site in Rampur, India. Atmospheric Environment, 37, 4837–4846.CrossRefGoogle Scholar
  15. Hellebust, S., Allanic, A., O’Connor, I. P., Wenger, J. C., & Sodeau, J. R. (2010). The use of real-time monitoring data to evaluate major sources of airborne particulate matter. Atmospheric Environment, 44, 1116–1125.CrossRefGoogle Scholar
  16. Honoki, H., Watanabe, K., Iida, H., Kawada, K., & Hayakawa, K. (2007). Deposition analysis of non sea-salt sulfate and nitrate along to thenorthwest winter monsoon in Hokuriku district by a snow boring core and bulk samples. Bulletin of Glaciological Research, 24, 23–28.Google Scholar
  17. Kleinman, M. T., Tomezyk, C., Leaderer, B. P., & Tanner, R. L. (1979). Inorganic nitrogen compounds in New York City. Annals of the New York Academy of Sciences, 322, 115–123.CrossRefGoogle Scholar
  18. Kopanakis, I., Eleftheriadis, K., Mihalopoulos, N., Lydakis-Simantiris, N., Katsivela, E., Pentari, D., Zarmpasc, P., & Lazaridis, M. (2012). Physico-chemical characteristics of particulate matter in the Eastern Mediterranean. Atmospheric Research, 106, 93–107.CrossRefGoogle Scholar
  19. Krauskopf, K. B., Bird, D. K. (1995). Introduction to geochemisdtry, third edition. New York: McGraw-Hill, p. 589–591.Google Scholar
  20. Kulshrestha, U. C., Reddy, L. A. K., Satyanarayana, J., & Kulshrestha, M. J. (2009). Real-time wet scavenging of major chemical constituents of aerosols and role of rain intensity in Indian region. Atmospheric Environment, 43, 5123–5127.CrossRefGoogle Scholar
  21. Kuo, S.-C., Tsai, Y. I., Tsai, C.-H., & Hsieh, L.-Y. (2011). Carboxylic acids in PM2.5 over Pinus morrisonicola forest and related photoreaction mechanisms identified via Raman spectroscopy. Atmospheric Environment, 45, 6741–6750.CrossRefGoogle Scholar
  22. Mooibroek, D., Schaap, M., Weijers, E. P., & Hoogerbrugge, R. (2011). Source apportionment and spatial variability of PM2.5 using measurements at five sites in the Netherlands. Atmospheric Environment, 45, 4180–4191.CrossRefGoogle Scholar
  23. Moreda-Piñeiro, J., Alonso-Rodríguez, E., Moscoso-Pérez, C., Blanco-Heras, G., Turnes-Carou, I., López-Mahía, P., Muniategui-Lorenzo, S., & Prada-Rodríguez, D. (2014). Influence of marine, terrestrial and anthropogenic sources on ionic and metallic composition of rainwater at a suburban site (northwest coast of Spain). Atmospheric Environment, 88, 30–38.CrossRefGoogle Scholar
  24. Perrone, M. R., Piazzalunga, A., Prato, M., & Carofalo, I. (2011). Composition of fine and coarse particles in a coastal site of the central Mediterranean: carbonaceous species contributions. Atmospheric Environment, 45, 7470–7477.CrossRefGoogle Scholar
  25. Piñeiro-Iglesias, M., López-Mahía, P., Muniategui-Lorenzo, S., Prada-Rodríguez, D., Querol, X., & Alastuey, A. (2003). A new method for the simultaneous determination of PAH and metals in samples of atmospheric particulate matter. Atmospheric Environment, 37, 4171–4175.CrossRefGoogle Scholar
  26. Pio, C. A., Castro, L. M., Cerqueira, M. A., Santos, I. M., Belchior, F., & Salgueiro, M. L. (1996). Source assessment of particulate air pollutants measured at the southwest European coast. Atmospheric Environment, 30, 3309–3320.CrossRefGoogle Scholar
  27. Pio, C. A., Legrand, M., Alves, C. A., Oliveira, T., Afonso, J., Caseiro, A., Puxbaum, H., Sanchez-Ochoa, A., & Gelencser, A. (2008). Chemical composition of atmospheric aerosols during the 2003 summer intense forest fire period. Atmospheric Environment, 42, 7530–7543.CrossRefGoogle Scholar
  28. Putaud, J. P., Raes, F., Van Dingenen, R., Brüggemann, E., Facchini, M. C., Decesari, S., Fuzzi, S., Gehrig, R., Hüglin, C., Laj, P., Lorbeer, G., Maenhaut, W., Mihalopoulos, N., Müller, K., Querol, X., Rodriguez, S., Schneider, J., Spindler, G., Brink, H. T., Tørseth, K., & Wiedensohler, A. (2004). A European aerosol phenomenology-2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe. Atmospheric Environment, 38, 2579–2595.CrossRefGoogle Scholar
  29. Querol, X., Alastuey, A., Moreno, T., Viana, M. M., Castillo, S., Pey, J., Rodríguez, S., Artiñano, B., Salvador, P., Sánchez, M., Garcia Dos Santos, S., Herce Garraleta, M. D., Fernandez-Patier, R., Moreno-Grau, S., Negral, L., Minguillón, M. C., Monfort, E., Sanz, M. J., Palomo-Marín, R., Pinilla-Gil, E., Cuevas, E., de la Rosa, J., & Sánchez de la Campa, A. (2008). Spatial and temporal variations in airborne particulate matter (PM10 and PM2.5) across Spain 1999–2005. Atmospheric Environment, 42, 3964–3979.CrossRefGoogle Scholar
  30. Rizzio, E., Giaveri, G., & Gallorini, M. (2000). Some analytical problems encountered for trace elements determination in the airborne particulate matter of urban and rural areas. Science of the Total Environment, 256, 11–22.CrossRefGoogle Scholar
  31. Rogula-Kozłowska, W., Klejnowski, K., Rogula-Kopiec, P., Mathews, B., & Szopa, S. (2012). A study on the seasonal mass closure of ambient fine and coarse dusts in Zabrze, Poland. Bulletin of Environmental Contamination and Toxicology, 88, 722–729.CrossRefGoogle Scholar
  32. Santos, P. S. M., Otero, M., Santos, E. B. H., & Duarte, A. C. (2011). Chemical composition of rainwater at a coastal town on the southwest of Europe: what changes in 20 years? Science of the Total Environment, 409, 3548–3553.CrossRefGoogle Scholar
  33. Schwartz, J., Dockery, D. W., & Neas, M. L. (1996). Is daily mortality associated specifically with fine particles? Journal of the Air and Waste Management Association, 46, 927–939.CrossRefGoogle Scholar
  34. Sillanpä, M., Hillamo, R., Saarikiski, S., Frey, A., Pennanen, A., Makkonen, U., Spolnik, Z., Van Grieken, R., Braniš, M., Brunekreef, B., Chalbot, M. C., Kuhlbusch, T., Sunyer, J., Kerminen, V. M., Kulmala, M., & Salonen, R. O. (2006). Chemical composition and mass closure of particulate matter at six urban sites in Europe. Atmospheric Environment, 40, 212–223.CrossRefGoogle Scholar
  35. Szigeti, T., Mihucz, V. G., Óvári, M., Baysal, A., Atılgan, S., Akman, S., & Záray, G. (2012). Chemical characterization of PM2.5 fractions of urban aerosol collected in Budapest and Istanbul. Microchemical Journal, 107, 86–94.CrossRefGoogle Scholar
  36. Szigeti, T., Mihucz, V. G., Óvári, M., Baysal, A., Atılgan, S., Akman, S., & Záray, G. (2013). Chemical characterization of PM2.5 fractions of urban aerosol collected in Budapest and Istanbul. Miccrochemical Journal, 107, 86–94.CrossRefGoogle Scholar
  37. Viana, M., López, J. M., Querol, X., Alastuey, A., Garcıía-Gacio, D., Blanco-Heras, G., López-Mahía, P., Piñeiro-Iglesias, M., Sanz, M. J., Sanz, F., Chi, X., & Maenhaut, W. (2008). Tracers and impact of open burning of rice straw residues on PM in Eastern Spain. Atmospheric Environment, 42, 1941–1957.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jorge Moreda-Piñeiro
    • 1
    • 2
    Email author
  • Isabel Turnes-Carou
    • 1
    • 2
  • Elia Alonso-Rodríguez
    • 1
    • 2
  • Carmen Moscoso-Pérez
    • 1
    • 2
  • Gustavo Blanco-Heras
    • 1
    • 2
  • Purificación López-Mahía
    • 1
    • 2
  • Soledad Muniategui-Lorenzo
    • 1
    • 2
  • Darío Prada-Rodríguez
    • 1
    • 2
  1. 1.Department of Analytical ChemistryGrupo Química Analítica Aplicada (QANAP), University Institute of Research in Environmental Studies (IUMA)A CoruñaSpain
  2. 2.Faculty of SciencesUniversity of A CoruñaA CoruñaSpain

Personalised recommendations