Water, Air, & Soil Pollution

, 225:2210 | Cite as

Monitoring Hg and Cd Contamination Using Red Swamp Crayfish (Procambarus clarkii): Implications for Wetland Food Chain Contamination

  • J. F. Henriques
  • P. C. Tavares
  • M. M. Correia-dos-Santos
  • M. A. Trancoso
  • M. Santos-Reis
  • C. Branquinho
Article

Abstract

Environmental pollution is one of the most serious causes of degradation of Mediterranean wetlands. Mercury (Hg) and cadmium (Cd) are of particular concern due to biomagnification. Here, we used red swamp crayfish (Procambarus clarkii) to monitor the spatial and temporal patterns of these two metals in a Portuguese rice field system. We sampled the crayfish in three different sites and three different time periods in the Sado River Basin (Portugal). We measured temperature, pH, total dissolved solids and conductivity in the water. Hg and Cd were measured in the crayfish abdominal muscle tissue and exoskeleton. In muscle, a spatial pattern was found for the accumulation of Cd while for Hg, only a temporal pattern emerged. The spatial pattern for Cd seemed to reflect the mining history of the sites, whereas the temporal pattern for Hg seemed related to the flooding of rice fields. We suggest that this flooding process increases Hg bioavailability.

Keywords

Ecological indicator Bioaccumulation Toxicity Trace elements 

References

  1. Alcorlo, P., Otero, M., Crehuet, M., Baltanás, A., & Montes, C. (2006). The use of the red swamp crayfish (Procambarus clarkii, Girard) as indicator of the bioavailability of heavy metals in environmental monitoring in the River Guadiamar (SW, Spain). Science of the Total Environment, 366, 380–390.CrossRefGoogle Scholar
  2. Alves, S., Correia dos Santos, M. M., & Trancoso, M. (2009). Evaluation of measurement uncertainties for the determination of total metal content in soils by atomic absorption spectrometry. Accreditation and Quality Assurance, 14, 87–93.CrossRefGoogle Scholar
  3. Antunes, C., Correia, O., Marques da Silva, J., Cruces, A., Freitas, C., & Branquinho, C. (2012). Factors involved in spatiotemporal dynamics of submerged macrophytes in a Portuguese coastal lagoon under Mediterranean climate. Estuarine, Coastal and Shelf Science, 110, 93–100.CrossRefGoogle Scholar
  4. Bervoets, L., & Blust, R. (2000). Effects of pH on cadmium and zinc uptake by the midge larvae Chironomus riparius. Aquatic Toxicology, 49, 145–57.CrossRefGoogle Scholar
  5. Burger, J. (2008). Assessment and management of risk to wildlife from cadmium. Science of the Total Environment, 389, 37–45.CrossRefGoogle Scholar
  6. Caeiro, S., Costa, M. H., DelValls, A., Repolho, T., Goncalves, M., Mosca, A., Coimbra, A. P., Ramos, T. B., & Painho, M. (2009). Ecological risk assessment of sediment management areas: application to Sado Estuary, Portugal. Ecotoxicology, 18, 1165–1175.CrossRefGoogle Scholar
  7. Clarkson, T. W., Magos, L. (2006). The toxicology of mercury and its chemcial compounds. Critical Reviews in Toxicology, 36, 609–662.Google Scholar
  8. Correia, A. M. (2001). Seasonal and interspecific evaluation of predation by mammals and birds on the introduced red swamp crayfish Procambarus clarkii (Crustacea, Cambaridae) in a freshwater marsh (Portugal). Journal of Zoology, 255, 533–541.CrossRefGoogle Scholar
  9. Correia, A. M., & Ferreira, Ó. (1995). Burrowing behaviour of the introduced red swamp crayfish Procambarus clarkii (Decapoda: Cambaridae) in Portugal. Journal of Crustacean Biology, 15, 248–257.CrossRefGoogle Scholar
  10. Cruz, M. J., Rebelo, R., & Crespo, E. G. (2006). Effects of an introduced crayfish, Procambrus clarkii, on the distribution of southwest Iberian amphibians in their breeding habitats. Ecography, 29, 329–338.CrossRefGoogle Scholar
  11. Da Silva, E. F., Fonseca, E. C., Matos, J. X., Patinha, C., Reis, P., & Oliveira, J. M. S. (2005). The effect of unconfined mine tailings on the geochemistry of soils, sediments and surface water of the Lousal area (Iberian Pyrite Belt, Southern Portugal). Land Degradation and Development, 16, 213–228.CrossRefGoogle Scholar
  12. Dutton, J., & Fisher, N. S. (2011). Salinity effects on the bioavailability of aqueous metals for the estuarine killifish Fundulus heteroclitus. Environmental Toxicology and Chemistry, 30(9), 2107–2114.CrossRefGoogle Scholar
  13. Eggleton, J., & Thomas, K. V. (2004). A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environment International, 30, 973–980.CrossRefGoogle Scholar
  14. Freitas, M. C., Andrade, C., Cruces, A., Munhá, J., Sousa, M. J., Moreira, S., Jouanneau, J. M., & Martins, L. (2008). Anthropogenic influence in the Sado estuary (Portugal): a geochemical approach. Journal of Iberian Geology, 34, 271–286.Google Scholar
  15. Geiger, W., Paloma, A., Baltanás, A., & Montes, C. (2005). Impacts of an introduced crustacean on the trophic web of Mediterranean wetlands. Biological Invasions, 7, 49–73.CrossRefGoogle Scholar
  16. Gonzalez, C., Clemente, A., Nielsen, K. A., Branquinho, C., & Santos, R. F. (2009). Human-nature relationship in Mediterranean streams: integrating different types of knowledge to improve water management. Ecology and Society, 14(2), 35.Google Scholar
  17. Hothem, R. L., Bergen, D. R., Bauer, M. L., Crayon, J. J., & Meckstroth, A. M. (2007). Mercury and trace elements in crayfish from Northern California. Bulletin of Environmental Contamination and Toxicology, 79, 628–632.CrossRefGoogle Scholar
  18. Huner, J. V., Könönena, H., Lindqvist, O. V. (1990).  Variation in body composition and exoskeleton mineralization as functions of the molt and reproductive cycles of the noble crayfish, Astacus astacus L. (Decapoda, astacidae), from a pond in central finland. Comparative Biochemistry and Physiology Part A: Physiology, 96, 235–240.Google Scholar
  19. Kouba, A., Buřič, M., & Kozák, P. (2010). Bioaccumulation and effects of heavy metals in crayfish: a review. Water, Air, and Soil Pollution, 211, 5–16.CrossRefGoogle Scholar
  20. Lemes, M., & Wang, F. (2009). Methylmercury speciation in fish muscle by HPLC-ICP-MS following enzymatic hydrolysis. Journal of Analytical Atomic Spectrometry, 24(5), 663–668.CrossRefGoogle Scholar
  21. Lillebo, A. I., Coelho, P. J., Pato, P., Válega, M., Margalho, R., Reis, M., Raposo, J., Pereira, E., Duarte, A. C., & Pardal, M. A. (2011). Assessment of mercury in water, sediments and biota of a Southern European estuary (Sado Estuary, Portugal). Water, Air, & Soil Pollution, 214, 667–680.CrossRefGoogle Scholar
  22. López-Chuken, U. J., López-Domínguez, U., Parra-Saldivar, R., Moreno-Jiménez, E., Hinojosa-Reyes, L., Guzmán-Mar, J. L., & Olivares-Sáenz, E. (2012). Implications of chloride enhance cadmium uptake in saline agriculture: modelling tobacco uptake by maize and tobacco. International Journal of Environmental Sciences, 9, 69–77.CrossRefGoogle Scholar
  23. Lourenço, P., & Priesma, T. (2008). Stopover ecology of black-tailed godwits Limosa limosa in Portuguese rice-fields: a guide on where to feed in winter: capsule conservation management of rice fields may be necessary to guarantee the availability of high quality stopover habitats. Bird Study, 55, 194–202.CrossRefGoogle Scholar
  24. Martin-Diáz, M. L., Tuberty, S. R., Mckenney, C. L., Blasco, J., Sarasquete, C., & DelValls, T. A. (2006). The use of bioaccumulation, biomarkers and histopathology diseases in shape Procambarus clarkii to establish bioavailability of Cd and Zn after a mining spill. Environmental Monitoring and Assessment, 116, 169–184.CrossRefGoogle Scholar
  25. Mason, R. P., Laporte, J. N., & Andres, S. (2000). Factors controlling the bioaccumulation of mercury, methylmercury, arsenic, selenium, and cadmium by freshwater invertebrates and fish. Archives of Environmental Contamination and Toxicology, 38, 283–297.CrossRefGoogle Scholar
  26. Matos, J. X., & Martins, L. P. (2006). Reabilitação ambiental de áreas mineiras do sector português da Faixa Piritosa Ibérica: estado da arte e perspectivas futuras. Boletín Geológico y Minero, 117, 289–304.Google Scholar
  27. McLean, J.E., Bledsoe, B.E. (1992). Ground water issue: behavior of metals in soils, EPA – United States Environmental Protection Agency, EPA/540/S-92/018.Google Scholar
  28. Mochizuki, M., Hondo, R., Kumon, K., Sasaki, R., Matsuba, H., & Ueda, F. (2002). Cadmium contamination in wild birds as an indicator of environmental pollution. Environmental Monitoring and Assessment, 73, 229–235.CrossRefGoogle Scholar
  29. Monteiro, M. T., Oliveira, R., & Vale, C. (1995). Metal stress on the plankton communities of Sado river (Portugal). Water Research, 29, 695–701.CrossRefGoogle Scholar
  30. Mouro, F., Calisto, S., Trancoso, M.A. (2009). Evaluation of measurement uncertainty for the moisture and dry matter in industrial residues and sludges. Proceedings of XIX IMEKO World Congress, 6–11 Setembro 2009, Lisbon 132 (533).Google Scholar
  31. Parks, J. M., Johs, A., Podar, M., Bridou, R., Hurt, R. A., Smith, S. D., Tomanicek, S. J., Qian, Y., Brown, S. D., Brandt, C. C., Palumbo, A. V., Smith, J. C., Wall, J. D., Elias, D. A., & Liang, L. Y. (2013). The genetic basis for bacterial mercury methylation. Science, 339, 1332–1335.CrossRefGoogle Scholar
  32. Pereira, H.M., Domingos, T., Vicente L. (2004). Portugal Millennium Ecosystem Assessment: State of the Assessment Report. Centro de Biologia Ambiental, Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal.Google Scholar
  33. Rothenberg, S. E., & Feng, X. (2012). Mercury cycling in a flooded rice paddy. Journal of Geophysical Research, 117, 1–16.CrossRefGoogle Scholar
  34. SNIRH. 2008. National system of information on water resources. [online] URL: http://snirh.pt/.
  35. Suárez-Serrano, A., Alcaraz, C., Ibáñez, C., Trobajo, R., & Barata, C. (2010). Procambarus clarkii as a bioindicator of heavy metal pollution sources in the lower Ebro river and delta. Ecotoxicology and Environmental Safety, 73, 280–286.CrossRefGoogle Scholar
  36. Tablado, Z., Tella, J., Sanchez-Zapata, J., & Hiraldo, F. (2010). The paradox of the long-term positive effects of a North American crayfish on a European community of predators. Conservation Biology, 24, 1230–1238.CrossRefGoogle Scholar
  37. Trancoso, I., Roseiro, L. O. B., Martins, A. P. L., & Trancoso, M. A. (2009). Validation and quality assurance applied to goat milk chemical composition: minerals and trace elements measurements. Dairy Science and Technology, 89, 241–256.CrossRefGoogle Scholar
  38. Wright, D. A., Wellbourn, P. M., & Martin, A. V. M. (1991). Inorganic and organic mercury uptake and loss by the crayfish Orconectes propinquus. Water, Air, & Soil Pollution, 56(1), 697–707.CrossRefGoogle Scholar
  39. Zar, J. H. (1996). Biostatistical analysis (International editions 3rd ed., p. 498 pp). New Jersey: Prentice Hall.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • J. F. Henriques
    • 1
  • P. C. Tavares
    • 2
  • M. M. Correia-dos-Santos
    • 3
  • M. A. Trancoso
    • 4
  • M. Santos-Reis
    • 1
  • C. Branquinho
    • 1
  1. 1.Centro de Biologia AmbientalUniversidade de LisboaLisbonPortugal
  2. 2.Instituto Superior Técnico, Departamento de MinasUniversidade Técnica de LisboaLisbonPortugal
  3. 3.Centro de Química EstruturalInstituto Superior TécnicoLisbonPortugal
  4. 4.Laboratório Nacional de Energia e GeologiaUnidade de BionergiaLisbonPortugal

Personalised recommendations