Advertisement

Water, Air, & Soil Pollution

, 225:2186 | Cite as

The Air Quality in African Rural Environments. Preliminary Implications for Health: The Case of Respiratory Disease in the Northern Benin

  • Florence De Longueville
  • Yvon Hountondji
  • Pierre Ozer
  • Sabine Henry
Article

Abstract

Recently, the World Health Organization’s International Association for Research on Cancer classified outdoor air pollution as carcinogenic to humans and puts air pollution in the same category as tobacco smoke, UV radiation, and plutonium. The ambient air is polluted by emissions from motor vehicles, industrial processes, power generation, household combustion of solid fuel, and other sources. Dust storms lead to particulate levels that exceed internationally recommended levels, especially near the Sahara. However, this source of air pollution appears to be under-studied, particularly in the literature devoted to human health impacts in West Africa. More than 50 % of the total dust emitted into the atmosphere comes from the Sahara. These aerosols contribute to increase the concentrations of particles smaller than 10 μm (PM10), which are breathable particles. This study is the first designed to assess the real impact of Saharan dust on air quality and respiratory health of children in a region of West Africa. Dust events having affected the Northern Benin during the dry seasons between 2003 and 2007 were determined. The analyzed health data are the monthly rates of acute lower respiratory infections (ALRI). Over the entire study period, 61 days of dust events were observed in the region. They recorded on average a daily PM10 concentration of 1017 μg m−3, more than 18 times higher than that calculated on all days without dust events. The study also highlighted a mean increase of 12.5 % of ALRI rates during the months recording dust events. The use of daily health data should help to refine these initial results in the future.

Keywords

Acute lower respiratory infections Dust Benin Children Sahara 

Notes

Acknowledgments

The authors gratefully acknowledge the Ministry of Public Health of Benin for providing health data and Bernadette Chatenet (technical aspects), Jean-Louis Rajot and Béatrice Marticorena (data collection) for allowing us to use PM10 data from Banizoumbou (Niger), recorded in the scope of the international African Monsoon Multidisciplinary Analysis (AMMA) program at three stations comprising the so-called ‘Sahelian Dust Transect’. We thank Caroline Zickgraf for English proofreading and the reviewer for insightful readings and constructive suggestions.

References

  1. Cheng, M. F., Ho, S. C., Chiu, H. F., Wu, H. F., Chen, P. S., & Yang, C. Y. (2008). Consequences of exposure to Asian dust storm events on daily pneumonia hospital admissions in Taipei, Taiwan. Journal of Toxicology and Environmental Health Part A, 71, 1295–1299.CrossRefGoogle Scholar
  2. D’Almeida, G. A. (1986). A model for Saharan dust transport. Journal of Applied Meteorology and Climatology, 25, 903–916.CrossRefGoogle Scholar
  3. de Haan, L. (1997). Agriculteurs et éleveurs au Nord-Bénin: Ecologie et genres de vie. Paris: Karthala Editions.Google Scholar
  4. de Longueville, F., Ozer, P., Doumbia, S., & Henry, S. (2013a). Desert dust impacts on human health: an alarming worldwide reality and a need for studies in West Africa. International Journal of Biometeorology, 57(1), 1–19.CrossRefGoogle Scholar
  5. de Longueville, F., Hountondji, Y. C., Ozer, P., Marticorena, B., Chatenet, B., & Henry, S. (2013b). Saharan dust impacts on air quality: what are the potential health risks in West Africa? Human and Ecological Risk Assessment, 19(6), 1595–1617.CrossRefGoogle Scholar
  6. de Longueville, F., Hountondji, Y. C., Djivo, P., & Henry, S. (2013c). Relations potentielles entre infections respiratoires aiguës basses et conditions météorologiques au Bénin. Environnement Risque et Santé, 12, 139–150.Google Scholar
  7. Derbyshire, E. (2007). Natural minerogenic dust and human health. AMBIO: A Journal of the Human Environment, 36(1), 73–77.CrossRefGoogle Scholar
  8. Deroubaix, A., Martiny, N., Chiapello, I., & Marticoréna, B. (2013). Suitability of OMI aerosol index to reflect mineral dust surface conditions: Preliminary application for studying the link with meningitis epidemics in the Sahel. Remote Sensing of Environment, 133, 116–127.CrossRefGoogle Scholar
  9. Engelstaedter, S., Tegen, I., & Washington, R. (2006). North African dust emissions and transport. Earth Sciences Research, 79, 73–100.CrossRefGoogle Scholar
  10. Findley, S.E., Doumbia, S., Medina, D.C., Guindo, B., Toure, M.B., Sogoba, N., et al. (2005). Season-smart: how knowledge of disease seasonnality and climate variability can reduce childhood illness in Mali. IUSSP XXV International Population Conference (session 905: Climate, Population, and Health), Tours, France, 18-23 July 2005.Google Scholar
  11. Garrison, V. H., Majewski, M. S., Foreman, W. T., Genualdi, S. A., Mohammed, A., & Massey Simonich, S. L. (2014). Persistent organic contaminants in Saharan dust air masses in West Africa, Cape Verde and the eastern Caribbean. Science of the Total Environment, 468, 530–543.CrossRefGoogle Scholar
  12. Goudie, A. S. (2014). Desert dust and human health disorders. Environment International, 63, 101–113.CrossRefGoogle Scholar
  13. Goudie, A. S., & Middleton, N. J. (2006). Desert dust in the global system. Berlin: SpringerGoogle Scholar
  14. Griffin, D. W. (2007). Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clinical Microbiology Reviews, 20, 459–477.CrossRefGoogle Scholar
  15. Hao, X., Qu, J.J. (2007). Saharan dust storm detection using moderate resolution imaging spectroradiometer thermal infrared bands. Journal of Applied Remote Sensing, 1, DOI:10.1117/1.2740039.Google Scholar
  16. Klose, M., Shao, Y., Karremann, M.K., Fink, A. H. (2010). Sahel dust zone and synoptic background. Geophysical Research Letters, 37(9).Google Scholar
  17. Knippertz, P., & Fink, A. H. (2006). Synoptic and dynamic aspects of an extreme springtime Saharan dust outbreak. Quarterly Journal of the Royal Meteorological Society, 132(617), 1153–1177.CrossRefGoogle Scholar
  18. Koren, I., Kaufman, Y. J., Washington, R., Todd, M. C., Rudich, Y., Vanderlai Martins, J., et al. (2006). The Bodélé depression: a single spot in the Sahara that provides most of the mineral dust to the Amazon forest. Environmental Research Letters, 1, 1–5. doi: 10.1088/1748-9326/1/1/014005.CrossRefGoogle Scholar
  19. Lang, T., Lafaix, C., Fassin, D., Arnaut, I., Salmon, B., Baudon, D., & Ezekiel, J. (1986). Acute respiratory infections: a longitudinal study of 151 children in Burkina Faso. International Journal of Epidemiology, 15, 553–556.CrossRefGoogle Scholar
  20. Léon, J. F., Derimian, Y., Chiapello, I., Tanré, D., Podvin, T., Chatenet, B., et al. (2009). Aerosol vertical distribution and optical properties over M'Bour (16.96° W; 14.39° N), Senegal from 2006 to 2008. Atmospheric Chemistry and Physics, 9(23), 9249–9261.CrossRefGoogle Scholar
  21. Li, J., Zhang, P., Schmit, T. J., Schmetz, J., & Menzel, W. P. (2007). Technical note: Quantitative monitoring of a Saharan dust event with SEVIRI on Meteosat-8. International Journal of Remote Sensing, 28, 2181–2186.CrossRefGoogle Scholar
  22. Lindén, J., Boman, J., Holmer, B., Thorsson, S., & Eliasson, I. (2012). Intra-urban air pollution in a rapidly growing Sahelian city. Environment International, 40, 51–62.CrossRefGoogle Scholar
  23. Liousse, C., Galy-Lacaux, C. (2010). Urban pollution in West Africa. Meteorologie. 8 e serie, 8(71), 45-49.Google Scholar
  24. Mallone, S., Stafoggia, M., Faustini, A., Gobbi, G. P., Marconi, A., & Forastiere, F. (2011). Saharan dust and associations between particulate matter and daily mortality in Rome, Italy. Environmental Health Perspectives, 119(10), 1409.CrossRefGoogle Scholar
  25. Marticorena, B., Chatenet, B., Rajot, J.-L., Traoré, S., Coulibaly, M., Diallo, A., et al. (2010). Temporal variability of mineral dust concentrations over West Africa: Analyses of a pluriannual monitoring from the AMMA Sahelian dust transect. Atmospheric Chemistry and Physics, 10, 8899–8915. doi: 10.5194/acp-10-8899-2010.CrossRefGoogle Scholar
  26. Martiny, N., & Chiapello, I. (2013). Assessments for the impact of mineral dust on the meningitis incidence in West Africa. Atmospheric Environment, 70, 245–253.CrossRefGoogle Scholar
  27. Martiny, N., Dessay, N., Yaka, P., Toure, O., Sultan, B., Rebaudet, S., et al. (2012). Le climat, un facteur de risque pour la santé en Afrique de l’Ouest. La Météorologie, N° Spécial Amma, 73-79.Google Scholar
  28. Medina, D. C., Findley, S. E., Guindo, B., & Doumbia, S. (2007). Forecasting non-stationary diarrhea, acute respiratory infection, and malaria time-series in Niono, Mali. PLoS ONE, 2(11), e1181. doi: 10.1371/journal.pone.0001181.CrossRefGoogle Scholar
  29. Meng, Z. Q., & Lu, B. (2007). Dust events as a risk factor for daily hospitalization for respiratory and cardiovascular diseases in Minqin, China. Atmospheric Environment, 4133, 7048–7058.CrossRefGoogle Scholar
  30. Middleton, N. J., & Goudie, A. S. (2001). Saharan dust: Sources and trajectories. Transactions of the Institute of British Geographers, 26, 165–181.CrossRefGoogle Scholar
  31. Middleton, N. J., Yiallouros, P., Kleanhous, S., Kolokotroni, O., Schwartz, J., Dockery, D. W., et al. (2008). A 10-year time-series analysis of respiratory and cardiovascular morbidity in Nicosia, Cyprus: the effects of short-term changes in air pollution and dust storms. Environmental Health, 7, 39. doi: 10.1186/1476-069X-7-39.CrossRefGoogle Scholar
  32. Monteil, M. A. (2008). Saharan dust clouds and human health in the English-speaking Caribbean: what we know and don’t know. Environmental Geochemistry and Health, 30, 339–343.CrossRefGoogle Scholar
  33. Nastos, P. T., Kampanis, N. A., Giaouzaki, K. N., & Matzarakis, A. (2011). Environmental impacts on human health during a Saharan dust episode at Crete Island, Greece. Meteorologische Zeitschrift, 20(5), 517–529.CrossRefGoogle Scholar
  34. Nouaceur, Z. (2004). Brume sèche, brume de poussière, chasse-sable et tempête de sable. Norois, 191, 121–128.CrossRefGoogle Scholar
  35. Nouaceur, Z. (2008). Apport des images-satellite dans le suivi des nuages de poussières en zones saharienne et sub-saharienne. Revue Télédétection, 8(1), 5–15.Google Scholar
  36. Oberle, F. (N/A). Monitoring of easterly Saharan dust storm. http://www.higp.hawaii.edu/spacegrant/reports/10_SP01-FA01/Oberle.pdf. Accessed 15 March 2014.
  37. Ozer, P. (2005). Estimation de la pollution particulaire naturelle de l’air en 2003 à Niamey Niger à partir de données de visibilité horizontale. Environnement Risques et Santé, 4, 43–49.Google Scholar
  38. Ozer, P. (2006). Dust in the wind and public health: Example from Mauritania. International conference: desertification, health, remediation and local governance (pp. 55–74). Brussels: Royal Academy for Overseas Sciences United Nations. 22 September 2006.Google Scholar
  39. Ozer, P., Bodart, C., & Tychon, B. (2005). Analyse climatique de la région de Gouré, Niger oriental: récentes modifications et impacts environnementaux. CyberGeo: European Journal of Geography, 308, 1–24.Google Scholar
  40. Ozer, P., Ould Mohamed Laghdaf, M. B., Ould Mohamed Lemine, S., & Gassani, J. (2007). Estimation of air quality degradation due to Saharan dust at Nouakchott, Mauritania, from horizontal visibility. Water, Air, & Soil Pollution, 178, 79–87.CrossRefGoogle Scholar
  41. Perez, L., Tobías, A., Querol, X., Pey, J., Alastuey, A., Díaz, J., & Sunyer, J. (2012). Saharan dust, particulate matter and cause-specific mortality: a case–crossover study in Barcelona (Spain). Environment International, 48, 150–155.CrossRefGoogle Scholar
  42. Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E., & Gill, T. E. (2002). Environmental characterization of global sources of atmospheric soil dust identified with the nimbus 7 total ozone mapping spectrometer (TOMS) absorbing aerosol product. Review of Geophysics, 40, 2-1–2-31. doi: 10.1029/2000RG000095.CrossRefGoogle Scholar
  43. Rajot, J.-L., Touré, A.A., Desboeufs, K., Formenti, P., Marticorena, B., Sow, M. (2012). Le cycle des aérosols terrigènes au Sahel: ce qu’AMMA nous a appris. La Météorologie, N° Spécial Amma, 33-40.Google Scholar
  44. Redelsperger, J.-L., Diedhiou, A., Flamant, C., Janicot, S., Lafore, J.-P., Lebel, T., et al. (2006). AMMA, une étude multidisciplinaire de la mousson ouest-africaine. La Météorologie, 22-32.Google Scholar
  45. Samoli, E., Nastos, P. T., Paliatsos, A. G., Katsouyanni, K., & Priftis, K. N. (2011). Acute effects of air pollution on pediatric asthma exacerbation: Evidence of association and effect modification. Environmental Research, 111, 418–424.CrossRefGoogle Scholar
  46. Sandstrom, T., & Forsberg, B. (2008). Desert dust. an unrecognized source of dangerous air pollution? Epidemiology, 19, 808–809.CrossRefGoogle Scholar
  47. Slingo, A., Ackerman, T. P., Allan, R. P., Kassianov, E. I., McFarlane, S. A., Robinson, G. J., et al. (2006). Observations of the impact of a major Saharan dust storm on the atmospheric radiation balance. Geophysical Research Letters, 33(24).Google Scholar
  48. Straif, K., Cohen, A., Samet, J. (eds) (2013). Air pollution and Cancer. IARC Scientific Publication N°161.Google Scholar
  49. Tulet, P., Mallet, M., Pont, V., Pelon, J., & Boone, A. (2008). The 7-13 March 2006 dust storm over West Africa: Generation, transport and vertical stratification. Journal of Geophysical Research, 113, D00C08. doi: 10.1029/2008JD009871.CrossRefGoogle Scholar
  50. Val, S., Liousse, C., El Hadji Thierno Doumbia, C. G., Lacaux, H. C., Marchand, N., Badel, A., et al. (2013). Physico-chemical characterization of African urban aerosols (Bamako in Mali and Dakar in Senegal) and their toxic effects in human bronchial epithelial cells: description of a worrying situation. Particule and Fibre Toxicology, 10(1), 10. doi: 10.1186/1743-8977-10-10.CrossRefGoogle Scholar
  51. van Donkelaar, A., Martin, R. V., Brauer, M., Kahn, R., Levy, R., Verduzco, C., & Villeneuve, P. J. (2010). Global estimates of ambient fine particulate matter concentrations from satellite-based aerosol optical depth: Development and application. Environmental Health Perspectives, 118(6), 847.CrossRefGoogle Scholar
  52. Wagner, R., Ajtai, T., Kandler, K., Lieke, K., Linke, C., Müller, T., et al. (2012). Complex refractive indices of Saharan dust samples at visible and near UV wavelengths: a laboratory study. Atmospheric Chemistry and Physics, 12(5), 2491–2512.CrossRefGoogle Scholar
  53. WMO. (1992). International meteorological vocabulary. Geneva: World Meteorological Organization.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Florence De Longueville
    • 1
    • 2
    • 4
  • Yvon Hountondji
    • 3
  • Pierre Ozer
    • 2
  • Sabine Henry
    • 1
  1. 1.Department of GeographyUniversity of NamurNamurBelgium
  2. 2.Department of Environmental Sciences and ManagementUniversity of LiegeArlonBelgium
  3. 3.Department of Natural Resources Management, Faculty of AgronomyUniversity of ParakouParakouBenin
  4. 4.CEDEMUniversity of LiegeLiegeBelgium

Personalised recommendations