Advertisement

Water, Air, & Soil Pollution

, 225:2144 | Cite as

Photo-assisted Electrochemical Degradation of Textile Effluent to Reduce Organic Halide (AOX) Production

  • Patrícia Aparecida Alves
  • Herbert Duchatsch Johansen
  • Sidney Aquino Neto
  • Adalgisa R. de Andrade
  • Artur de Jesus Motheo
  • Geoffroy Roger Pointer MalpassEmail author
Article

Abstract

The application of combined electrochemical and photochemical techniques for the degradation of real textile effluent is presented. It is demonstrated that the simultaneous use of both techniques, in conjunction with in situ generation of free chlorine and its subsequent photolysis, is a promising technique for removing color and chemical oxygen demand (COD) from effluents. Crucially, the combination of electrochemical and photochemical techniques leads to lower quantities of chlorine-containing degradation by-products being produced and no overall increase in toxicity. Over the treatment times studied, up to 65 % less chloride-containing degradation by-products are formed while at the same time greater rates of color and COD removal are achieved.

Keywords

Textile waste Photo-assisted electrochemical degradation AOX Color removal Chlorine photolysis 

Notes

Acknowledgments

The authors would like to thank Dr. E.A. Bessa for his collaboration during the phytotoxicity tests. The financial support from both CNPq and FAPEMIG, Brazil, is acknowledged.

Supplementary material

11270_2014_2144_MOESM1_ESM.docx (87 kb)
ESM 1 (DOCX 86 kb)

References

  1. Akpan, U. G., & Hameed, B. H. (2009). Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. Journal of Hazardous Materials, 170, 520–529.CrossRefGoogle Scholar
  2. Alves, P. A., Malpass, G. R. P., Miwa, D. W., & Motheo, A. J. (2010). Photo-assisted electrochemical degradation of real textile wastewater. Water Science and Technology, 61, 491–498.CrossRefGoogle Scholar
  3. American Society for Testing and Materials. (1998). Standard guide for conducting terrestrial plant toxicity. West Conshohocken: ASTM.Google Scholar
  4. APHA. (1995). Standard Methods for the examination of water and wastewater (18th ed.). Washington: APHA - AWWA – WPCF.Google Scholar
  5. Aquino Neto, S., & De Andrade, A. R. (2009). Electrochemical degradation of glyphosate formulations at DSA® anodes in chloride medium: an AOX formation study. Journal of Applied Electrochemistry, 39, 1863–1870.CrossRefGoogle Scholar
  6. Bergmann, M. E. H., Rollin, J., & Iourtchouk, T. (2000). The occurrence of perchlorate during drinking water electrolysis using BDD anodes. Electrochimica Acta, 54, 2102–2107.CrossRefGoogle Scholar
  7. Catanho, M., Malpass, G. R. P., & Motheo, A. J. (2006). Photoelectrochemical treatment of the dye reactive red 198 using DSA® electrodes. Applied Catalysis B: Environmental, 62, 193–200.CrossRefGoogle Scholar
  8. Chen, G. (2004). Electrochemical technologies in wastewater treatment. Separation and Purification Tecnology, 38, 11–41.CrossRefGoogle Scholar
  9. Feng, Y. G., Smith, D. W., & Bolton, J. R. (2007). Photolysis of aqueous free chlorine species (HOCl and OCl) with 254 nm ultraviolet light. Journal of Environmental Engineering and Science, 6, 277–284.CrossRefGoogle Scholar
  10. Gomes, L., Freitas, R. G., Malpass, G. R. P., Pereira, E. C., & Motheo, A. J. (2009). Pt film electrodes prepared by the pechini method for electrochemical decolourisation of reactive orange 16. Journal of Applied Electrochemistry, 39, 117–121.CrossRefGoogle Scholar
  11. Gomes, L., Miwa, D. W., Malpass, G. R. P., & Motheo, A. J. (2011). Electrochemical degradation of the dye reactive orange 16 using electrochemical flow-cell. Journal of the Brazilian Chemical Society, 22, 1299–1306.CrossRefGoogle Scholar
  12. Gopal, K., Tripathy, S. S., Bersillon, J. L., & Dubey, S. P. (2007). Chlorination byproducts, their toxicodynamics and removal from drinking water. Journal of Hazardous Materials, 140, 1–6.CrossRefGoogle Scholar
  13. Hamilton, M. A., Russo, R. C., & Thurston, R. V. (1977). Trimmed Spearman-Karber method for estimating median lethal concentrations in toxicity bioassays. Environmental Science and Technology, 11, 714–719.CrossRefGoogle Scholar
  14. Jo, W. K., & Tayade, R. J. (2014). New generation energy-efficient light source for photocatalysis: LEDs for environmental applications. Industrial & Engineering Chemical Research, 53, 2073–2084.CrossRefGoogle Scholar
  15. Jüttner, K., Galla, U., & Schmieder, H. (2004). Electrochemical approaches to environmental problems in the process industry. Electrochimica Acta, 45, 2575–2594.CrossRefGoogle Scholar
  16. Konstantinou, I. K., & Albanis, T. A. (2004). TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Applied Catalysis B: Environmental, 49, 1–14.CrossRefGoogle Scholar
  17. Legrini, O., Oliveros, E., & Braun, A. M. (1993). Photochemical processes for water treatment. Chemical Reveiws, 93, 671–698.CrossRefGoogle Scholar
  18. Malpass, G. R. P., Miwa, D. W., Mortari, D. A., Machado, S. A. S., & Motheo, A. J. (2007a). Decolorisation of real textile waste using electrochemical techniques: effect of the chloride concentration. Water Research, 41, 2969–2977.CrossRefGoogle Scholar
  19. Malpass, G. R. P., Miwa, D. W., Miwa, A. C. P., Machado, S. A. S., & Motheo, A. J. (2007b). Photo-assisted electrochemical oxidation of atrazine on a commercial Ti/Ru0.3Ti0.7O2 DSA® electrode. Environmental Science and Technology, 41, 7120–7125.CrossRefGoogle Scholar
  20. Malpass, G. R. P., Miwa, D. W., Machado, S. A. S., & Motheo, A. J. (2008). Decolorisation of real textile waste using electrochemical techniques: effect of electrode material. Journal of Hazardous Materials, 156, 170–177.CrossRefGoogle Scholar
  21. Martinez-Huitle, C. A., & Brillas, E. (2009). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Applied Catalysis B: Environmental, 87, 105–145.CrossRefGoogle Scholar
  22. Martinez-Huitle, C. A., & Ferro, S. (2006). Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chemical Society Reviews, 35, 1324–1340.CrossRefGoogle Scholar
  23. Martinez-Huitle, C. A., Ferro, S., & De Battisti, A. (2005). Electrochemical incineration in the presence of halides. Electrochemical and Solid State Letters, 8, D35–D39.CrossRefGoogle Scholar
  24. O’Neil, C., Hawkes, F. R., Hawkes, D. L., Lourenco, N. D., Pinheiro, H. M., & Delee, W. (1999). Colour in textile effluents—sources, measurement, discharge consents and simulation: a review. Journal of Chemical Technology and Biotechnology, 74, 1009–1018.CrossRefGoogle Scholar
  25. Panizza, M., & Cerisola, G. (2009). Direct and mediated anodic oxidation of organic pollutants. Chemical Reviews, 109, 6541–6569.CrossRefGoogle Scholar
  26. Rajkumar, D. G., Kim, J., & Palanivelu, K. (2005). Indirect electrochemical oxidation of phenol in the presence of chloride for wastewater treatment. Chemical Engineering and Technology, 28, 98–105.CrossRefGoogle Scholar
  27. Rao, A. N. S., & Venkatarangaiah, V. T. (2014). Metal oxide-coated anodes in wastewater treatment. Environmental Science and Pollution Research, 21, 3197–3217.CrossRefGoogle Scholar
  28. Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource Technology, 77, 247–255.CrossRefGoogle Scholar
  29. Scialdone, O., Randazzo, S., Galia, A., & Silvestri, G. (2009). Electrochemical oxidation of organics in water: role of operative parameters in the absence and in the presence of NaCl. Water Research, 43, 2260–2272.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Patrícia Aparecida Alves
    • 1
  • Herbert Duchatsch Johansen
    • 1
  • Sidney Aquino Neto
    • 2
  • Adalgisa R. de Andrade
    • 2
  • Artur de Jesus Motheo
    • 1
  • Geoffroy Roger Pointer Malpass
    • 3
    Email author
  1. 1.Instituto de Química de São CarlosUniversidade de São PauloSão CarlosBrazil
  2. 2.Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil
  3. 3.Departamento de Engenharia Química, Instituto de Ciências Tecnológicas e ExatasUniversidade Federal do Triângulo MineiroUberaba-MGBrazil

Personalised recommendations