Water, Air, & Soil Pollution

, 225:2141 | Cite as

The Influence of Littoral on Mercury Bioaccumulation in a Humic Lake

  • Markus Lindholm
  • Heleen A. de Wit
  • Tor Erik Eriksen
  • Hans Fredrik Veiteberg Braaten


Concentration of methylmercury (MeHg) in different habitats and associated food chains may vary because of habitat characteristics that determine methylation and MeHg transfer. We examined MeHg levels in primary consumers from littoral, pelagial and profundal habitats of a boreal humic lake, and measured total mercury (TotHg) and MeHg in surface sediments at increasing depths. MeHg concentrations in primary consumers increased from profundal to littoral, a pattern which was mirrored by the surface sediment concentrations. Methylation potential (expressed as the ratio of MeHg to TotHg) was lower in profundal than in littoral sediments, suggesting that littoral sediments have higher net methylation rates. No specific MeHg-enriched entrance point in the littoral food chain was identified, however. High MeHg concentrations in littoral primary consumers and sediments suggest that shallow lake sediments are important for MeHg transfer to the aquatic food web in boreal humic lakes. Lake morphometry, most specifically the fraction of littoral, is hence likely to add to differences in MeHg bioaccumulation rates in lake food webs.


Methylmercury Carbon source Food chain Littoral Pelagial Profundal 



This work was supported by The Norwegian Institute for Water Research/NIVA (Grant number O-29101) and The Norwegian Research Council (Project number 196295).


  1. Benoit, J. M., Gilmour, C. C., Heyes, A., Mason, R. P., & Miller, C. L. (2003). Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems. In Y. Cai & O. C. Braids (Eds.), Biogeochemistry of environmentally important trace elements (pp. 262–297). Washington DC: American Chemical Society.Google Scholar
  2. Bloom, N. S. (1992). On the chemical form of mercury in edible fish and marine invertebrate tissue. Canadian Journal of Fisheries and Aquatic Sciences, 49, 1010–1017.CrossRefGoogle Scholar
  3. Bloom, N. S., Colman, J. A., & Barber, L. (1997). Artifact formation of methyl mercury during aqueous distillation and alternative techniques for the extraction of methyl mercury from environmental samples. Fresenius Journal of Analytical Chemistry, 358, 371–377.CrossRefGoogle Scholar
  4. Cabana, G., & Rasmussen, J. B. (1994). Modelling food-chain structure and contaminant bioaccumulation using stable nitrogen isotopes. Nature, 372, 255–257.CrossRefGoogle Scholar
  5. Chasar, L. C., Scudder, B. C., Stewart, A. R., Bell, A. H., & Aiken, G. R. (2009). Mercury cycling in stream ecosystems. 3. Trophic dynamics and methylmercury bioaccumulation. Environmental Science & Technology, 43, 2733–2739.CrossRefGoogle Scholar
  6. Chen, C. Y., & Folt, C. L. (2005). High plankton densities reduce mercury biomagnification. Environmental Science & Technology, 39(1), 115–121.CrossRefGoogle Scholar
  7. Chetelat, J., Amyot, M., Cloutier, L., & Poulain, A. (2008). Metamorphosis in Chironomids, more than mercury supply, controls methylmercury transfer to fish in high Arctic lakes. Environmental Science & Technology, 42, 9110–9115.CrossRefGoogle Scholar
  8. Chetelat, J., Amyot, M., & Garcia, E. (2011). Habitat-specific bioaccumulation of methylmercury in invertebrates of small mid-latitude lakes in North America. Environmental Pollution, 159, 10–17.CrossRefGoogle Scholar
  9. Clayden, M. G., Kidd, K. A., Wyn, B., Kirk, J. L., Muir, D. C. G., & O’Driscoll, O. J. (2013). Mercury biomagnification through food webs is affected by physical and chemical characteristics of lakes. Environmental Science & Technology, 47(21), 12047–12053.CrossRefGoogle Scholar
  10. De Wit, H. A., Kainz, M. J., & Lindholm, M. (2012). Methylmercury bioaccumulation in invertebrates of boreal streams in Norway: effects of aqueous methylmercury and diet retention. Environmental Pollution, 164, 235–241.CrossRefGoogle Scholar
  11. De Wit, H., Granhus A., Lindholm, M., Kainz, M., Lin, Y., Braaten, H.F.V. & Blaszczak, J. (2014). Forest harvest effects on mercury in streams and biota in Norwegian boreal catchments. Forest Ecology and Management, accepted for publication. doi  10.1016/j.foreco.2014.03.044.
  12. Driscoll, C. T., Han, Y. J., Chen, C. Y., Evers, D. C., Lambert, K. F., Holsen, T. M., Kamman, N. C., & Munson, R. K. (2007). Mercury contamination in forest and freshwater ecosystems in the Northeastern United States. Bioscience, 57, 17–28.CrossRefGoogle Scholar
  13. Driscoll, C. T., Mason, R. P., Chan, D. J., & Pirrone, N. (2013). Mercury as a global pollutant: sources, pathways and effects. Environmental Science & Technology, 47(10), 4967–4983.CrossRefGoogle Scholar
  14. Eagles-Smith, C. A., Suchanek, T. H., Colwell, A. E., & Anderson, N. L. (2008). Mercury trophic transfer in a eutrophic lake: the importance of habitat-specific foraging. Ecological Applications, 18, A196–A212.CrossRefGoogle Scholar
  15. Ethier, A. L. M., Scheuhammer, A. M., Blais, J. M., Paterson, A. M., Mierle, G., Ingram, R., & Lean, D. R. S. (2010). Mercury empirical relationships in sediments from three Ontario lakes. Science of the Total Environment, 408, 2087–2095.CrossRefGoogle Scholar
  16. Fitzgerald, W. F., Engstrom, D. R., Mason, R. P., & Nater, E. A. (1998). The case for atmospheric mercury contamination in remote areas. Environmental Science & Technology, 32, 1–7.CrossRefGoogle Scholar
  17. Fjeld, E., & Rognerud, S. (1993). Use of path-analysis to investigate mercury accumulation in brown trout (Salmo trutta) in Norway and the influence of environmental factors. Canadian Journal of Fisheries and Aquatic Sciences, 50, 1158–1167.CrossRefGoogle Scholar
  18. Fjeld, E., Rognerud, S., & Steinnes, E. (1994). Influence of environmental factors on heavy-metal concentration in lake sediments in southern Norway indicated by path-analysis. Canadian Journal of Fisheries and Aquatic Sciences, 51, 1708–1720.CrossRefGoogle Scholar
  19. France, R. L. (1995). Differentiation between littoral and pelagic food webs in lakes using stable carbon isotopes. Limnology and Oceanography, 40, 1310–1313.CrossRefGoogle Scholar
  20. Fuller, R. L., Kennedy, B. P., & Nielsen, C. (2004). Macroinvertebrate responses to algal and bacterial manipulations in streams. Hydrobiologia, 523, 113–126.CrossRefGoogle Scholar
  21. Garmo, Ø., Skancke, L. B. & Høgåsen, T. (2013). The Norwegian monitoring program for long-range transported air pollutants. Annual report—Water chemical effects 2012 (In Norwegian with English summary). Oslo, Norway: Norwegian Institute for Water Research (NIVA), Klima- og forurensningsdirektoratet (Klif), Direktoratet for naturforvaltning (DN).Google Scholar
  22. George, B. M., & Batzer, D. (2008). Spatial and temporal variations of mercury levels in Okefenokee invertebrates: Southeast Georgia. Environmental Pollution, 152, 484–490.CrossRefGoogle Scholar
  23. Gilmour, C. C., Riedel, G. S., Ederington, M. C., Bell, J. T., Benoit, J. M., Gill, G. A., & Stordal, M. C. (1998). Methylmercury concentrations and production rates across a trophic gradient in the northern Everglades. Biogeochemistry, 40, 327–345.CrossRefGoogle Scholar
  24. Gilmour, C. C., Podar, M., Bullock, A. L., Graham, A. M., Brown, S. D., Somenahally, A. C., Johs, A., Hurt, R. A., Bailey, K. L., & Elias, D. A. (2013). Mercury methylation by novel microorganisms from new environments. Environmental Science & Technology, 47, 11810–11820.CrossRefGoogle Scholar
  25. Grigal, D. F. (2002). Inputs and outputs of mercury from terrestrial watersheds: a review. Environmental Reviews, 10(1), 1–39.CrossRefGoogle Scholar
  26. Grigal, D. F. (2003). Mercury sequestration in forests and peatlands: a review. Journal of Environmental Quality, 32, 393–405.CrossRefGoogle Scholar
  27. Håkanson, L., Nilsson, A., & Andersson, T. (1988). Mercury in fish in Swedish lakes. Environmental Pollution, 49, 145–162.CrossRefGoogle Scholar
  28. Hershey, A. E., Beaty, S., Fortino, K., Kelly, S., Keyse, M., Luecke, C., O'Brien, W. J., & Whalen, S. C. (2006). Stable isotope signatures of benthic invertebrates in arctic lakes indicate limited coupling to pelagic production. Limnology and Oceanography, 51, 177–188.CrossRefGoogle Scholar
  29. Hessen, D. O., Andersen, T., & Lyche, A. (1990). Carbon metabolism in a humic lake—pool sizes and cycling through zooplankton. Limnology and Oceanography, 35, 84–99.CrossRefGoogle Scholar
  30. Hintelmann, H., & Nguyen, H. T. (2005). Extraction of methylmercury from tissue and plant samples by acid leaching. Analytical and Bioanalytical Chemistry, 381, 360–365.Google Scholar
  31. Horvat, M., Liang, L., Azemard, S., Mandie, V., Villeneuve, J. P., & Coquery, M. (1997). Certification of total mercury and methylmercury concentrations in mussel homogenate (Mytilus edulis) reference material, IAEA-142. Fresenius Journal of Analytical Chemistry, 358, 411–418.CrossRefGoogle Scholar
  32. Horvat, M., Logar, M., Ogrinic, N., Fajon, V., Lojen, S., Akagi, H., Ando, T., Tomiyasu, T., & Matsuyama, A. (2004). The effect of sampling and sample pretreatment on MeHg concentration in coastal marine sediments. RMZ - Materials and Geoenvironment, 51(2), 1939–1943.Google Scholar
  33. Jansson, M., Persson, L., de Roos, A. M., Jones, R. I., & Tranvik, L. J. (2007). Terrestrial carbon and intraspecific size-variation shape lake ecosystems. Trends in Ecology & Evolution, 22, 316–322.CrossRefGoogle Scholar
  34. Jones, R. I., Carter, C. E., Kelly, A., Ward, S., Kelly, D. J., & Grey, J. (2008). Widespread contribution of methane-cycle bacteria to the diets of lake profundal chironomid larvae. Ecology, 89, 857–864.CrossRefGoogle Scholar
  35. Kainz, M., & Mazumder, A. (2005). Effect of algal and bacterial diet on methyl mercury concentrations in zooplankton. Environmental Science & Technology, 39, 1666–1672.CrossRefGoogle Scholar
  36. Kainz, M., Lucotte, M., & Parrish, C. C. (2003). Relationships between organic matter composition and methyl mercury content of offshore and carbon-rich littoral sediments in an oligotrophic lake. Canadian Journal of Fisheries and Aquatic Sciences, 60, 888–896.CrossRefGoogle Scholar
  37. Kidd, K. A., Paterson, M. J., Hesslein, R. H., Muir, D. C. G., & Hecky, R. E. (1999). Effects of northern pike (Esox lucius) additions on pollutant accumulation and food web structure, as determined by delta C-13 and delta N-15, in a eutrophic and an oligotrophic lake. Canadian Journal of Fisheries and Aquatic Sciences, 56, 2193–2202.CrossRefGoogle Scholar
  38. Larssen, T., de Wit, H. A., Wiker, M., & Halse, K. (2008). Mercury budget of a small forested boreal catchment in southeast Norway. Science of the Total Environment, 404, 290–296.CrossRefGoogle Scholar
  39. Marcarelli, A. M., Baxter, C. V., Mineau, M. M., & Hall, R. O. (2011). Quantity and quality: unifying food web and ecosystem perspectives on the role of resource subsidies in freshwaters. Ecology, 92, 1215–1225.CrossRefGoogle Scholar
  40. Mariash, H. L., Cazzanelli, M., Kainz, M. J., & Rautio, M. (2011). Food sources and lipid retention of zooplankton in subarctic ponds. Freshwater Biology, 56, 1850–1862.CrossRefGoogle Scholar
  41. McClain, M. E., Boyer, E. W., Dent, C. L., Gergel, S. E., Grimm, N. B., Groffman, P. M., Hart, S. C., Harvey, J. W., Johnston, C. A., Mayorga, E., McDowell, W. H., & Pinay, G. (2003). Biogeochemical hot spots and hot moments at the interface of terrestrial and aquatic ecosystems. Ecosystems, 6, 301–312.CrossRefGoogle Scholar
  42. Mitchell, C. P. J., Brainfireun, B. A., & Kolka, R. K. (2008). Spatial characteristics of net methylmercury production hot spots in peatlands. Environmental Science & Technology, 42, 1010–1016.CrossRefGoogle Scholar
  43. Morel, F. M. M., Kraepiel, A. M. L., & Amyot, M. (1998). The chemical cycle and bioaccumulation of mercury. Annual Review of Ecology and Systematics, 29, 543–566.CrossRefGoogle Scholar
  44. Nilsson, A., & Hakanson, L. (1992). Relationships between mercury in lake water, water color and mercury in fish. Hydrobiologia, 235, 675–683.CrossRefGoogle Scholar
  45. Peterson, B. J., & Fry, B. (1987). Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics, 18, 293–320.CrossRefGoogle Scholar
  46. Ramlal, P. S., Kelly, C. A., Rudd, J. W. M., & Furutani, A. (1993). Sites of methyl mercury production in remote Canadian shield lakes. Canadian Journal of Fisheries and Aquatic Sciences, 50, 972–979.CrossRefGoogle Scholar
  47. Ravichandran, M. (2004). Interactions between mercury and dissolved organic matter—a review. Chemosphere, 55, 319–331.CrossRefGoogle Scholar
  48. Rognerud, S., & Fjeld, E. (2001). Trace element contamination of Norwegian lake sediments. Ambio, 30, 11–19.Google Scholar
  49. Rognerud, S., Skotvold, T., Fjeld, E., Norton, S. A., & Hobaek, A. (1998). Concentrations of trace elements in recent and preindustrial sediments from Norwegian and Russian Arctic lakes. Canadian Journal of Fisheries and Aquatic Sciences, 55, 1512–1523.CrossRefGoogle Scholar
  50. Savage, A. A. (1989). Adults of the British aquatic Hemiptera Heteroptera: a key with ecological notes. Cumbria: Freshwater Biological Association Scientific Publication.Google Scholar
  51. Stefansson, E. S., Heyes, A., & Rowe, C. L. (2013). Accumulation of dietary methyllmercury and effects on growth and survival in two estuarine forage fish: Cyprinodon variegatus and Menidia beryllina. Environmental Toxicology and Chemistry, 32(4), 848–856.CrossRefGoogle Scholar
  52. Stewart, A. R., Saiki, M. K., Kuwabara, J. S., Alpers, C. N., Marwin-Dipasquale, M., & Krabbenhoft, D. P. (2008). Influence of plankton mercury dynamics and trophic pathways on mercury concentrations of top predator fish of a mining-impacted reservoir. Canadian Journal of Fisheries and Aquatic Sciences, 65, 2351–2366.CrossRefGoogle Scholar
  53. Trudel, M., & Rasmussen, J. B. (2006). Bioenergetics and mercury dynamics in fish: a modelling perspective. Canadian Journal of Fisheries and Aquatic Sciences, 63, 1890–1902.CrossRefGoogle Scholar
  54. Tsui, M. T. K., & Wang, W. X. (2004). Uptake and elimination routes of inorganic mercury and methylmercury in Daphnia magna. Environmental Science & Technology, 38, 808–816.CrossRefGoogle Scholar
  55. Ullrich, S. M., Tanton, T. W., & Abdrashitova, S. A. (2001). Mercury in the aquatic environment: a review of factors affecting methylation. Critical Reviews in Environmental Science and Technology, 31, 241–293.CrossRefGoogle Scholar
  56. USEPA (1998). Method 1630 Methylmercury in water by distillation, aqueous ethylation, purge and trap, and cold vapor atomic fluorescence spectrometry. In: Telliard, W. A. (ed.). US Environmental Protection Agency - Office of Water.Google Scholar
  57. Vadeboncoeur, Y., van der Zanden, M. J., & Lodge, D. M. (2002). Putting the lake back together: reintegrating benthic pathways into lake food web models. Bioscience, 52, 44–54.CrossRefGoogle Scholar
  58. Wilkinson, G. M., Carpenter, S. R., Cole, J. J., Pace, M. L., & Yang, C. (2013). Terrestrial support of pelagic consumers: patterns and variability revealed by a multilake study. Freshwater Biology, 58, 2037–2049.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Markus Lindholm
    • 1
  • Heleen A. de Wit
    • 1
  • Tor Erik Eriksen
    • 1
  • Hans Fredrik Veiteberg Braaten
    • 1
    • 2
  1. 1.Norwegian Institute for Water Research (NIVA)OsloNorway
  2. 2.Department of ChemistryUniversity of OsloOsloNorway

Personalised recommendations