Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Long-Term Operation of an ASBBR Used to Treat Dairy Effluent: Effect of the Recirculation Rate on System Monitoring, Kinetics, and Key Microorganisms

  • 183 Accesses

  • 1 Citations


The aim of the present study was to evaluate the influence of the recirculation rate on the efficiency of a 1,000-L pilot anaerobic sequencing batch biofilm reactor (ASBBR) treating effluent from a small dairy plant over a long-term period (570 days). Three operational conditions were studied, in which recirculation rates were varied, resulting in upflow velocities of 0.2, 3.8, and 6.4 m h−1 and the cycle time of 48 h. The biomass was immobilized on plastic supports containing polyurethane foam. The organic loading rate varied according to the operations occurring in the dairy plant. After system stability had been verified, temporal profiles of the substrate and metabolite concentrations were obtained, allowing kinetic parameter inference. Sludge samples from the inoculum and from the reactor were analyzed through microscopic examination, molecular biology analyses, and specific methanogenic activity assays. The average efficiencies of organic matter removal were 82 ± 11, 84 ± 9, and 87 ± 9 % at velocities of 0.2, 3.8, and 6.4 m h−1, respectively. Microscopic examinations indicated that the fluorescent microorganisms decreased throughout the experiment, and they were not detected in the last condition. Homoacetogenesis was inferred as a possible pathway for H2 removal and for maintenance of the methanogenic process. Specific methanogenic activity increased throughout the monitoring period. It was possible to conclude that the ASBBR was efficient, robust, and reliable in treating dairy effluents under the conditions used.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. Alves, M. M., Mota Vieira, J. A., Alvares Pereira, R. M., Pereira, M. A., & Mota, M. (2000). Effects on lipids and oleic acid on biomass development in anaerobic fixed-bed reactors. Part II: Oleic acid toxicity and biodegradability. Water Research, 35(1), 264–270.

  2. Alves, M. M., Pereira, M. A., Sousa, D. Z., Cavaleiro, A. J., Picavet, M., Smidt, H., & Stams, A. J. M. (2009). Waste lipids to energy: how to optimize methane production from long-chain fatty acids (LCFA). Minireview. Microbial Biotechnology, 2(5), 538–550.

  3. APHA/AWWA/WEF. (1998). Standard methods for the examination of water and wastewater (20th ed.). Washington, DC: American Public Health Association.

  4. Aquino, S. F., & Chernicharo, C. A. L. (2005). Build up of volatile fatty acids (VFA) in anaerobic reactor under stress conditions: causes and control strategies. Engenharia Sanitária Ambiental, 2(10), 152–161 (In Portuguese).

  5. Aquino, S. F., Chernicharo, C. A. L., Foresti, E., Santos, M. L. F., & Monteggia, L. O. (2007). Methodologies for determining the specific methanogenic activity (SMA) in anaerobic sludges. Engenharia Sanitária Ambiental, 2(12), 192–201 (In Portuguese).

  6. Belançon, D., Fuzatto, M. C., Gomes, D. R. S., Cichello, G. C. V., Pinho, S. C., Ribeiro, R., & Tommaso, G. (2010). A comparison of two bench-scale anaerobic systems used for the treatment of dairy effluents. International Journal of Dairy Technology, 63, 1–8.

  7. Bezerra, R. A., Jr., Rodrigues, J. A. D., Ratuszney, S. M., Zaiat, M., & Foresti, E. (2007). Whey treatment by AnSBBR with circulation: effects of organic loading, shock loads, and alkalinity supplementation. Applied Biochemistry and Biotechnology, 143, 257–275.

  8. Demirel, B., Yenigun, O., & Onay, T. T. (2005). Anaerobic treatment of dairy wastewaters: a review. Process Biochemistry, 40, 2583–2595.

  9. Dillalo, R., & Albertson, O. E. (1961). Volatile acids by direct titration. Journal WPCF, 33, 356–365.

  10. Fuzatto, M. C., Adorno, M. A. T., Pinho, S. C., Ribeiro, R., & Tommaso, G. (2009). Simplified mathematical model for an anaerobic sequencing batch biofilm reactor (ASBBR) treating lipid-rich wastewater subject to rising organic loading rates. Environmental Engineering Science, 26(7), 1197–1205.

  11. Gavala, H. N., Kopsinis, H., Skiadas, I. V., Stamatelatou, K., & Lyberatos, G. (1999). Treatment of dairy wastewater using an upflow anaerobic sludge blanket reactor. Journal of Agricultural Engineering Research, 73, 59–63.

  12. Griffiths, R. I., Whiteley, A. S., O’donnell, A. G., & Bailey, M. J. (2000). Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA and rRNA-based microbial community composition. Applied and Environmental Microbiology, 66, 5488–5491.

  13. Hassan, A. N., & Nelson, B. K. (2012). Anaerobic fermentation of dairy food wastewater. Journal of Dairy Science, 95(11), 6188–6203.

  14. Heuer, H., Krsek, M., Baker, P., Smalla, K., & Wellington, E. M. H. (1997). Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel electrophoretic separation in denaturing gradients. Applied and Environmental Microbiology, 63, 3233–3241.

  15. Kudo, Y., Nakajima, T., Miyaki, T., & Oyaizu, H. (1997). Methanogen flora of paddy soils in Japan. FEMS Microbiology Ecology, 22, 39–48.

  16. Lapa, K. R. (2006). Influence of the liquid phase recirculation and the feeding regimen on a pilot anaerobic immobilized biomass sequencing batch reactor treating domestic sewage. EESC, USP, Sao Carlos, Brazil: PhD dissertation. 190p; (in Portuguese).

  17. Matsumoto, E. M., Osako, M. S., Pinho, S. C., Tommaso, G., Gomes, T. M., & Ribeiro, R. (2012). Treatment of wastewater from dairy plants using Anaerobic Sequencing Batch Reactor (ASBR) following by Aerobic Sequencing Batch Reactor (SBR) aiming the removal of organic matter and nitrification. Water Practice and Technology. doi:10.2166/wpt.2012.048.

  18. Mockaitis, G., Ratusznei, S. M., Rodrigues, J. A. D., Zaiat, M., & Foresti, E. (2006). Anaerobic whey treatment by a stirred sequencing batch reactor (ASBR): effects of organic loading and supplemented alkalinity. Journal of Environmental Management, 2(79), 198–206.

  19. Moraes, E. M., Adorno, M. A. T., Zaiat, M., and Foresti, E. (2000) Determination of volatile fatty acids by gas chromatography in effluents from anaerobic reactors treating solid and liquid wastes. In: Proceedings of workshop and symposium on anaerobic processes. Recife, 2, 231–234.

  20. Muyzer, G., Waal, E. C., & Uitterlinden, G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S RNAr. Applied and Environmental Microbiology, 59, 695–700.

  21. Nübel, U., Engelen, B., Felske, A., Snaidr, J., Wieshuber, A., Amann, R. I., Ludwig, W., & Backhaus, H. (1996). Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. Journal of Bacteriology, 178, 5636–5643.

  22. Penteado, T. Z., Santana, R. S. S., Dibiazi, A. L. B., Pinho, S. C., Ribeiro, R., & Tommaso, G. (2011). Effect of agitation on the performance of an anaerobic sequencing batch reactor in the treatment of dairy effluents. Water Science and Technology, 63, 995–1003.

  23. Perle, M., Kimchie, S., & Shelef, G. (1995). Some biochemical aspects of the anaerobic degradation of dairy wastewater. Water Research, 6(9), 1549–1554.

  24. Pinho, S. C., Ratusznei, S. M., Rodrigues, J. A. D., Foresti, E., & Zaiat, M. (2005). Feasibility of treating partially soluble wastewater in anaerobic sequencing batch biofilm reactor (ASBBR) with mechanical stirring. Bioresource Technology, 96, 517–519.

  25. Rajeshwari, K. V., Balakrishnan, M., Kansal, A., Lata, K., & Kishore, V. N. V. (2000). State-of-the-art of anaerobic digestion technology for industrial wastewater treatment. Renewable & Sustainable Energy Reviews, 4, 135–156.

  26. Ratusznei, S. M., Rodrigues, J. A. D., Camargo, E. F. M., Zaiat, M., & Borzani, W. (2001). Influence of agitation rate on the performance of a stirred anaerobic sequencing batch reactor containing immobilized biomass. Water Science and Technology, 44, 305–312.

  27. Ratusznei, S. M., Rodrigues, J. A. D., Camargo, E. F. M., Ribeiro, R., & Zaiat, M. (2003). Effect of feeding strategy on a stirred anaerobic sequencing fed-batch reactor containing immobilized biomass. Bioresource Technology, 90, 199–205.

  28. Ripley, L. E., Boyle, W. C., & Converse, J. C. (1986). Improved alkalimetric monitoring for anaerobic digestion of high-strength wastes. Journal WPCF, 58, 406–411.

  29. Saady, N. M. C. (2013). Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: Unresolved challenge. International Journal of Hydrogen Energy, 38, 13172–13191.

  30. SAS. (1995). USER’S GUIDE: basic and statistic. Cary: SAS, 1.686 p.

  31. Speece, R. E. (1996). Anaerobic biotechnology for industrial wastewaters. Vanderbilt University Nashville: Arquea. 394 p.

  32. Stams, A. J. M. (1994). Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie Van Leeuwenhoek, 66, 271–279.

  33. Steil, L. (2001) Use and characterization of inoculum in biodigestion operated with chicken, swine and hens. Master thesis—UNESP, Jaboticabal, Brasil, 90 p (In Portuguese).

  34. Vavilin, V. A. (2007). Corrected first-order model of DEHP degradation. Chemosphere, 68(10), 1992–1995.

  35. Voolapalli, R., & Stuckey, D. C. (1999). Relative importance of trophic group concentrations during anaerobic degradation of volatile fatty acids. Applied and Environmental Microbiology, 65(11), 5009–5016.

  36. Vourch, M., Balannec, B., Chaufer, B., & Dorange, G. (2008). Treatment of dairy industry wastewater by reverse osmosis for water reuse. Desalination, 219, 190–202.

  37. Zehnder, A. J., Huser, B. A., Brock, T. D., & Wuhrmann, K. (1980). Characterization of an acetate-decarboxylating, non-hydrogen-oxidizing methane bacterium. Archives of Microbiology, 124(1), 1–11.

Download references


This study was supported by the Conselho nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brasil, process number 482660/2007-4) and by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, Brasil, process numbers 2007/54589-4 and 2010/11972-5).

Author information

Correspondence to Giovana Tommaso.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Santana, R.S.S., Figueiredo, M.S., Pozzi, E.G. et al. Long-Term Operation of an ASBBR Used to Treat Dairy Effluent: Effect of the Recirculation Rate on System Monitoring, Kinetics, and Key Microorganisms. Water Air Soil Pollut 225, 2137 (2014).

Download citation


  • Anaerobic reactor
  • Dairy effluents
  • Recirculation rate