Water, Air, & Soil Pollution

, 225:2046 | Cite as

Agricultural Reuse of the Digestate from Anaerobic Co-Digestion of Organic Waste: Microbiological Contamination, Metal Hazards and Fertilizing Performance

  • Silvia Bonetta
  • Sara Bonetta
  • Elisa Ferretti
  • Giorgio Fezia
  • Giorgio Gilli
  • Elisabetta CarraroEmail author


The aim of this study was to evaluate the agricultural reuse of the digestate products (DPs) obtained from mesophilic anaerobic co-digestion of different organic wastes (sludge, cattle slurries and organic fraction of municipal solid wastes). At this scope, the content of faecal indicators and pathogens as well as the heavy metal concentration of DPs was monitored. The fertilizing performance of the DPs was also investigated. Co-digestion trials were performed using laboratory-scale (LRs) and pilot-scale reactors (PRs). The microbiological analysis of DPs showed the common presence of Salmonella and an inadequate reduction of indicator organisms during the digestion process, both in the LRs and the PRs. Moreover, the presence of pathogens (e.g. Listeria monocytogenes) in some DP samples highlighted the importance of the microbiological quality evaluation of the DPs to study the possible health risks for consumer. In several samples of DPs, the Cu, Ni and Zn contents exceeded the maximum admissible concentration for fertilizer, as specified by Italian law, suggesting possible environmental contamination if the DPs are used for agricultural purposes. Considering the fertilizing performance, significant differences of growth parameters were observed only for the DPs that were produced by LRs. In conclusion, this work can be considered as a preliminary study to evaluate the possible agricultural reuse of the digestate obtained from different organic wastes.


Anaerobic co-digestion Agricultural reuse Fertilizer Faecal indicator bacteria Pathogenic bacteria Heavy metals 



The authors wish to thank the Piedmont Region for funding. This work is a portion of a larger project referred to as Digested Energy, which was envisioned in response to the 2006 call for Pre-competitive Development and Industrial Research. This funding scheme was promoted by the Piedmont Region with European Community resources. Finally, the authors thank the numerous collaborators employed in each of the involved institutions: Università degli Studi di Torino, Politecnico di Torino, SMAT S.p.A., AMIAT S.p.A., Ansaldo FC S.p.A., Acsel Susa S.p.A., VM-press s.r.l., Federsviluppo, E.R.A.P.R.A. Piemonte and Università degli Studi del Piemonte Orientale “A. Avogadro”.


  1. Abubaker, J., Risberg, K., & Pell, M. (2012). Biogas residues as fertilizers—effects on wheat growth and soil microbial activities. Applied Energy, 99, 126–134.CrossRefGoogle Scholar
  2. Alkanok, G., Demirel, B., & Onay, T. T. (2014). Determination of biogas generation potential as a renewable energy source from supermarket wastes. Waste Management, 34, 134–140.CrossRefGoogle Scholar
  3. Amon, T., Amon, B., Kryvoruchko, V., Zollitsch, W., Mayer, K., & Gruber, L. (2007). Biogas production from maize and dairy cattle manure—influence of biomass composition on the methane yield. Agriculture, Ecosystems & Environment, 118, 173–182.CrossRefGoogle Scholar
  4. Bagge, E., Sahlstrom, L., & Albihn, A. (2005). The effect of hygienic treatment on the microbial flora of biowaste at biogas plants. Water Research, 39, 4879–4886.CrossRefGoogle Scholar
  5. Bonetta, S., Ferretti, E., Bonetta, S., Fezia, G., & Carraro, E. (2011a). Microbiological contamination of digested products from anaerobic co-digestion of bovine manure and agricultural by-products. Letters in Applied Microbiology, 53, 552–557.CrossRefGoogle Scholar
  6. Bonetta, S., Borelli, E., Bonetta, S., Conio, O., Palumbo, F., & Carraro, E. (2011b). Development of a PCR protocol for the detection of Escherichia coli O157:H7 and Salmonella spp. in surface water. Environmental Monitoring and Assessment, 177, 493–503.CrossRefGoogle Scholar
  7. Chauret, C., Springthrope, S., & Sattar, S. (1999). Fate of Cryptosporidium oocysts, Giardia cysts, and microbial indicators during wastewater treatment and anaerobic sludge digestion. Canadian Journal of Microbiology, 45, 257–262.CrossRefGoogle Scholar
  8. Colleran, E. (2000). Hygienic and sanitation requirements in biogas plants treating animal manures or mixtures of manures and other organic wastes. In H. Ørtenblad (Ed.), Anaerobic digestion: Making energy and solving modern waste problems (pp. 77–86). Denmark: AD-NETT, Herning Municipal Authorities.Google Scholar
  9. Commission Regulation (EU) No 142/2011 of 25 February 2011 implementing Regulation (EC) No 1069/2009 of the European Parliament and of the Council, laying down health rules as regards animal by-products and derived products not intended for human consumption and implementing Council Directive 97/78/EC as regards certain samples and items exempt from veterinary checks at the border under that Directive. Official Journal of the European Union n. L 54/1 of 26/2/2011.Google Scholar
  10. Dabrowska, L., & Rosinska, A. (2012). Change of PCBs and forms of heavy metals in sewage sludge during thermophilic anaerobic digestion. Chemosphere, 88, 168–173.CrossRefGoogle Scholar
  11. Dahab, M. F., & Surampalli, R. Y. (2002). Effects of aerobic and anaerobic digestion systems on pathogen indicator reduction in municipal sludge. Water Science and Technology, 46, 181–187.Google Scholar
  12. Demirel, B., Orok, M., Hot, E., Erkisi, S., Albukrek, M., & Onay, T. T. (2013). Recovery of biogas as a source of renewable energy from ice-cream production residues and wastewater. Environmental Technology, 34, 13–14.CrossRefGoogle Scholar
  13. Diaz, J. P., Reydes, I. P., Lundin, M., & Horvath, I. S. (2011). Co-digestion of different waste mixture from agro-industrial activities: kinetic evaluation and synergetic effects. Bioresource Technology, 102, 10834–10840.CrossRefGoogle Scholar
  14. D.Lgs. 27 gennaio 1992, n. 99. Attuazione della direttiva 86/278/CEE concernente la protezione dell’ambiente, in particolare del suolo, nell’utilizzazione dei fanghi di depurazione in agricoltura. Gazzetta Ufficiale n. 038. Suppl. Ord. del 15/02/1992.Google Scholar
  15. D.Lgs. 3 dicembre 2010, n. 205. Disposizioni di attuazione della direttiva 2008/98/CE del Parlamento europeo e del Consiglio del 19 novembre 2008 relativa ai rifiuti e che abroga alcune direttive. Gazzetta ufficiale n. 288. Suppl. Ord. del 10/12/2010.Google Scholar
  16. D.M. 7 aprile 2006, n. 109. Recante criteri e norme tecniche generali per la disciplina regionale dell’utilizzazione agronomica degli effluenti di allevamento, di cui all’articolo 38 del D.Lgs. 11 maggio 1999, n. 152. Gazzetta Ufficiale n. 109. Suppl. Ord. del 12/05/2006.Google Scholar
  17. D.M. 18 dicembre 2009, n. 29818. Aggiornamento del decreto ministeriale 22 gennaio 2009, n. 1601, recante: Aggiornamento degli allegati del decreto legislativo 29 aprile 2006, n. 217, concernente la revisione della disciplina in materia di fertilizzanti. Gazzetta Ufficiale n. 62 Suppl. Ord. del 16/03/2010.Google Scholar
  18. Dong, L., Zhenhong, Y., & Yongming, S. (2010). Semi-dry mesophilic anaerobic digestion of water sorted organic fraction of municipal solid waste (WS-OFMSW). Bioresource Technology, 101, 2722–2728.CrossRefGoogle Scholar
  19. EREC (2008). Renewable energy technology roadmap 20 % by 2020. European Renewable Energy Council, pp. 24.Google Scholar
  20. Garcia, A., Maulini, C., Torrente, J. M., Sanchez, A., Barrera, R., & Xavier, F. (2012). Biological treatment of the organic fibre from the autoclaving of municipal solid wastes; preliminary results. Biosystems Engineering, 112, 335–343.CrossRefGoogle Scholar
  21. Garfi, M., Gelman, P., Comas, J., Carrasco, W., & Ferrer, I. (2011). Agricultural reuse of the digestate from low-cost tubular digesters in rural Andean communities. Waste Management, 31, 2584–2589.CrossRefGoogle Scholar
  22. Govasmark, E., Stab, J., Holen, B., Hoornstr, A. D., Nesbakk, T., & Salkinoja-Salonen, M. (2011). Chemical and microbiological hazards associated with recycling of anaerobic digested residue intended for agricultural use. Waste Management, 31, 2577–2583.CrossRefGoogle Scholar
  23. Hassen, A., Belguith, K., Jedidi, N., Cherif, A., Cherif, M., & Boudabous, A. (2001). Microbial characterization during composting of municipal solid waste. Bioresource Technology, 80, 217–225.CrossRefGoogle Scholar
  24. Horan, N. J., Fletcher, L., Betmal, S. M., Wilks, S. A., & Kevil, C. W. (2004). Die-off of enteric bacterial pathogens during mesophilic anaerobic digestion. Water Research, 38, 1113–1120.CrossRefGoogle Scholar
  25. Hu, C. J., Gibbs, R. A., Mort, N. R., Hofstede, H. T., Ho, G. E., & Unkovich, I. (1996). Giardia and its implications for sludge disposal. Water Science and Technology, 34, 179–186.CrossRefGoogle Scholar
  26. ISS. (2007). Metodi Analitici di riferimento per le acque destinate al consumo umano ai sensi del DL.vo 31/2001. Metodi Microbiologici. In L. Bonadonna & M. Ottaviani (Eds.), Rapporti ISTISAN, 07/5. Roma: Istituto Superiore di Sanità.Google Scholar
  27. Iwasaki, M., Yamashiro, T., Beneragama, N., Nishida, T., Kida, K., Ihara, I., Takahashi, J., & Umetsu, K. (2011). The effect of temperature on survival of pathogenic bacteria in biogas plants. Journal of Animal Science, 82, 707–712.CrossRefGoogle Scholar
  28. Jin, H., & Chang, Z. (2011). Distribution of heavy metal contents and chemical fractions in anaerobically digested manure slurry. Applied Biochemistry and Biotechnology, 164, 268–282.CrossRefGoogle Scholar
  29. Johansson, M., Emmoth, E., Salomonsson, A. C., & Albihn, A. (2005). Potential risks when spreading anaerobic digestion residues on grass silage crops—survival of bacteria, moulds and viruses. Grass and Forage Science, 60, 175–185.CrossRefGoogle Scholar
  30. Larsen, H. E., Munch, B., & Schlundt, J. (1994). Use of indicators for monitoring the reduction of pathogens in animal waste treated in biogas plants. Zentralblatt für Hygiene und Umweltmedizin, 195, 544–555.Google Scholar
  31. Lehtomaki, A., & Bjornsson, L. (2006). Two-stage anaerobic digestion of energy crops: methane production, nitrogen mineralisation and heavy metal mobilisation. Environmental Technology, 27, 209–218.CrossRefGoogle Scholar
  32. Macias-Corral, M., Samani, Z., Hanson, A., Smith, G., Funk, P., Yu, H., & Longwarth, J. (2008). Anaerobic digestion of municipal solid waste and agricultural waste and the effect of co-digestion with dairy cow manure. Bioresource Technology, 99, 8288–8293.CrossRefGoogle Scholar
  33. Massanet-Nicolau, J. (2003). New method using sedimentation and immunomagnetic separation for isolation and enumeration of Cryptosporidium parvum oocysts and Giardia lamblia cysts. Applied and Environmental Microbiology, 69, 6758–6761.CrossRefGoogle Scholar
  34. Murto, M., Bjornsson, L., & Mattiasson, B. (2004). Impact of food industrial waste on anaerobic co-digestion of sewage sludge and pig manure. Journal of Environmental Management, 70, 101–107.CrossRefGoogle Scholar
  35. Nasir, M. I., Mohd Ghazi, T. I., & Omar, R. (2012). Production of biogas from solid organic wastes through anaerobic digestion: a review. Applied Microbiology and Biotechnology, 95, 321–329.CrossRefGoogle Scholar
  36. Ning, X.J., Yu, H.J., Jiang, W.J., Liu, X.R. (2011). Effects of nitrogen rate on the growth, yield and quality of tomato in greenhouse fertilization with biogas slurry. In Castilla, N., van Kooten, O., Sase, S., Meneses, J.F., Schnitzler, W.H., van Os, E. (Eds), ISHS Acta Horticulturae 927–XXVIII International horticultural congress on science and horticulture for people (IHC2010): International symposium on greenhouse 2010 and soilless cultivation.Google Scholar
  37. Nishikawa, T., Li, K., Inoue, H., Umeda, M., Hirooka, H., & Inamura, T. (2012). Effects of the long-term application of anaerobically-digested cattle manure on growth, yield and nitrogen uptake of paddy rice (Oryza sativa L.), and soil fertility in warmer region of Japan. Plant Production Science, 15, 284–292.CrossRefGoogle Scholar
  38. Novarino, D., & Zanetti, M. C. (2012). Anaerobic digestion of extruded OFMSW. Bioresource Technology, 104, 44–50.CrossRefGoogle Scholar
  39. Parawira, W., Murto, M., Zvauya, R., & Mattiasson, B. (2004). Anaerobic batch digestion of solid potato waste alone and in combination with sugar, beet leaves. Renewable Energy, 29, 1811–1823.CrossRefGoogle Scholar
  40. Rajeshwari, K. V., Balakrishnan, M., Kansal, A., Lata, K., & Kishore, V. V. N. (2000). State-of-the-art of anaerobic digestion technology for industrial wastewater treatment. Renewable & Sustainable Energy Reviews, 4, 135–156.CrossRefGoogle Scholar
  41. Rubio-Loza, L. A., & Noyola, A. (2010). Two-phase (acidogenic-methanogenic) anaerobic thermophilic/mesophilic digestion system for producing Class A biosolids from municipal sludge. Bioresource Technology, 101, 576–585.CrossRefGoogle Scholar
  42. Sager, M. (2007). Trace and nutrient elements in manure, dung and compost samples in Austria. Soil Biology & Biochemistry, 39, 1383–1390.CrossRefGoogle Scholar
  43. Sahlstrom, L. (2003). A review of survival of pathogenic bacteria in organic waste used in biogas plants. Bioresourca Technology, 87, 161–166.CrossRefGoogle Scholar
  44. Sahlstrom, L., Aspan, A., Bagge, E., Danielsson-Tham, M. L., & Albihn, A. (2004). Bacterial pathogen incidences in sludge from Swedish sewage treatment plants. Water Research, 38, 1989–1994.CrossRefGoogle Scholar
  45. Sidhu, J. P. S., & Toze, S. G. (2009). Human pathogens and their indicators in biosolids: a literature review. Environment International, 35, 187–201.CrossRefGoogle Scholar
  46. Soupir, M. L., Mostaghimi, S., Yagow, R., Hagedorn, C., & Vaughan, H. (2006). Transport of fecal bacteria from poultry litter and cattle manures applied to pastureland. Water, Air, & Soil Pollution, 169, 125–136.CrossRefGoogle Scholar
  47. Tambone, F., Scaglia, B., D’Imporzano, G., Schievano, A., Orzi, V., Salati, S., Adani, F., et al. (2010). Assessing amendment and fertilizing properties of digestates from anaerobic digestion through a comparative study with digested sludge and compost. Chemosphere, 81, 577–583.CrossRefGoogle Scholar
  48. Traversi, D., Villa, S., Lorenzi, E., Degan, R., & Gilli, G. (2012). Application of a real-time qPCR method to measure the methanogen concentration during anaerobic digestion as an indicator of biogas production capacity. Journal of Environmental Management, 111, 173–177.CrossRefGoogle Scholar
  49. Traversi, D., Bonetta, S., Degan, R., Villa, S., Porfido, A., Bellero, M., Carraro, E., & Gilli, G. (2013). Environmental advances due to the integration of food industries and anaerobic digestion for biogas production: perspectives of the Italian milk and dairy product sector. Bioenergy Research. doi: 10.1007/s12155-013-9341-4.Google Scholar
  50. Tulayakul, P., Boonsoongnern, A., Kasemsuwan, S., Wiriyarampa, S., Pankumnoed, J., Tippayaluck, S., Hananantachai, H., Mingkhwan, R., Netvichian, R., & Khaodhiar, S. (2011). Comparative study of heavy metal and pathogenic bacterial contamination in sludge and manure in biogas and non-biogas swine farms. Journal of Environmental Sciences, 23, 991–997.CrossRefGoogle Scholar
  51. Uysal, A., Yilmazel, Y. D., & Demirer, G. N. (2010). The determination of fertilizer quality of the formed struvite from effluent of a sewage sludge anaerobic digester. Journal of Hazardous Materials, 181, 248–254.CrossRefGoogle Scholar
  52. Venglovsky, J., Martinez, J., & Placha, I. (2006). Hygienic and ecological risks connected with utilization of animal manures and biosolids in agriculture. Livestock Science, 102, 197–203.CrossRefGoogle Scholar
  53. Viau, E., & Peccia, J. (2009). Evaluation of the enterococci indicator in biosolids using culture-based and quantitative PCR assays. Water Research, 43, 4878–4887.CrossRefGoogle Scholar
  54. Wagner, A. O., Gstraunthaler, G., & Illmer, P. (2008). Survival of bacterial pathogens during the thermophilic anaerobic digestion of biowaste: laboratory experiments and in situ validation. Anaerobe, 14, 181–183.CrossRefGoogle Scholar
  55. Ward, A. J., Hobs, P. J., Holliman, P. J., & Jones, D. L. (2008). Optimization of the anaerobic digestion of agricultural resources. Bioresource Technology, 99, 7928–7940.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Silvia Bonetta
    • 1
  • Sara Bonetta
    • 2
  • Elisa Ferretti
    • 1
  • Giorgio Fezia
    • 3
  • Giorgio Gilli
    • 2
  • Elisabetta Carraro
    • 2
    Email author
  1. 1.Dipartimento di Scienze ed Innovazione Tecnologica (DiSIT)Università del Piemonte Orientale “A. Avogadro”AlessandriaItaly
  2. 2.Dipartimento di Scienze della Sanità Pubblica e PediatricheUniversità di TorinoTorinoItaly
  3. 3.Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d’AostaAlessandriaItaly

Personalised recommendations