Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Assessing the Mobilization of Cadmium, Lead, and Nickel Using a Seven-Step Sequential Extraction Technique in Contaminated Floodplain Soil Profiles Along the Central Elbe River, Germany

  • 691 Accesses

  • 59 Citations

Abstract

The mobilization of toxic metals in soils strongly depends on their bounding in different geochemical fractions. However, the relations between soil properties and the vertical horizon-specific distribution of different geochemical fractions of cadmium (Cd), lead (Pb), and nickel (Ni) in various floodplain soil types are limited and have not been studied up to date. Therefore, seven soil profiles in three areas along the Elbe River, Germany, which represent the two soil groups Mollic Fluvisols and Eutric Gleysols, were selected to determine geochemical fractions of Cd, Pb, and Ni. A sequential extraction procedure which fractionate metals into the seven fractions: F1: soluble+exchangeable, F2: easily mobilizable, F3: bound to Mn oxides, F4: bound to soil organic matter, F5: occluded into amorphous Fe oxides, F6: occluded into crystalline Fe oxides, and F7: residual fraction was used. Concentrations of pseudo-total Cd, Ni, and Pb were exceeded the international trigger action values and governed mainly by soil organic carbon (SOC), cation exchange capacity, and Fe–Mn sesquioxides. The mobile fraction (∑F1–F2) was dominant for Cd, whereas Pb was mainly bounded in F4/F5, and Ni in F7/F6. Cadmium and Pb reveal a higher potential mobility (∑F1–F6) than Ni. The potential mobile fraction ranged from 90 % to 97 %, 44 % to 61 %, and 83 % to 92 % of the (pseudo)total Cd, Ni, and Pb, respectively. The Gleysols showed a higher mobile fraction and potential mobile fraction than Fluvisols. The mobile fraction of the metals correlated positively with clay, SOC, and total sulfur (St), and negatively with pH and Fe–Mn oxides. Our results indicate that the studied soils exhibit elevated concentrations of Cd, Ni, and Pb, as well as a high potential mobilization of these metals. Our findings suggest that a release of these toxic metals in floodplain soils should be considered due to an increased mobilization and the potential environmental risks such as uptake by plants, and thus, the transfer of these metals into the grassland and food chain, as well as transport via waters during periods of flooding.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Ahmad, M., Lee, S. S., Lim, J. E., Lee, S. E., Cho, J. S., Moon, D. H., et al. (2014). Speciation and phytoavailability of lead and antimony in a small arms range soil amended with mussel shell, cow bone and biochar: EXAFS spectroscopy and chemical extractions. Chemosphere, 95(1), 433–441.

  2. Ahumada, I., Ascar, L., Pedraza, C., Vásquez, V., Carrasco, A., Richter, P., et al. (2011). Determination of the bioavailable fraction of Cu and Zn in soils amended with biosolids as determined by diffusive gradients in thin films (DGT), BCR sequential extraction, and ryegrass plant. Water, Air, & Soil Pollution, 219(1–4), 225–237.

  3. Antic-Mladenovic, S., Rinklebe, J., Frohne, T., Stärk, H.-J., Wennrich, R., Tomić, Z., et al. (2011). Impact of controlled redox conditions on nickel in a serpentine soil. Journal of Soil and Sediments, 11(2), 406–415.

  4. Arenas-Lago, D., Andrade, M. L., Lago-Vila, M., Rodríguez-Seijo, A., & Vega, F. A. (2014). Sequential extraction of heavy metals in soils from a copper mine: Distribution in geochemical fractions. Geoderma, 230–231, 108–118.

  5. Bai, J., Xiao, R., Cui, B., Zhang, K., Wang, Q., Liu, X., et al. (2011). Assessment of heavy metal pollution in wetland soils from the young and old reclaimed regions in the Pearl River Estuary, South China. Environmental Pollution, 159, 817–824.

  6. BBodSchV. (1999). Bundes-Bodenschutz- und Altlastenverordnung (BBodSchV) vom 12. Juli 1999. Bundesgesetzblatt I 1999, 1554 [Federal Soil Protection and Contaminated Sites Ordinance dated 12 July 1999].

  7. Blume, H.-P., Stahr, K., & Leinweber, P. (2011) Bodenkundliches Praktikum. Berlin.

  8. Burton, E. D., Phillips, I. R., & Hawker, D. W. (2005). Geochemical partitioning of copper, lead, and zinc in benthic, estuarine sediment profiles. Journal of Environmental Quality, 34(1), 263–273.

  9. DIN ISO Norm 11466 (1997). Soil quality, extraction of trace elements soluble in aqua regia.

  10. Du Laing, G., Meers, E., Dewispelaere, M., Vandecasteele, B., Rinklebe, J., Tack, F. M. G., et al. (2009). Heavy metal mobility in intertidal sediments of the Scheldt estuary: field monitoring. Science of the Total Environment, 407, 2919–2930.

  11. Fan, W., Xu, Z., & Wang, W.-X. (2014). Metal pollution in a contaminated bay: relationship between metal geochemical fractionation in sediments and accumulation in a polychaete. Environmental Pollution, 191, 50–57.

  12. Frohne, T., Rinklebe, J., Diaz-Bone, R. A., & Du Laing, G. (2011). Controlled variation of redox conditions in a floodplain soil: impact on metal mobilization and biomethylation of arsenic and antimony. Geoderma, 160(3–4), 414–424.

  13. Frohne, T., Rinklebe, J., & Diaz-Bone, R. A. (2014). Contamination of floodplain soils along the Wupper River, Germany, with As, Co, Cu, Ni, Sb, and Zn and the impact of pre-definite redox variations on the mobility of these elements. Soil and Sediment Contamination: An International Journal, 23, 779–799.

  14. Gonzalez-Alcaraz, M. N., Conesa, H. M., & Alvarez-Rogel, J. (2013). Phytomanagement of strongly acidic, saline eutrophic wetlands polluted by mine wastes: the influence of liming and Sarcocornia fruticosa on metals mobility. Chemosphere, 90(10), 2512–2519.

  15. He, Q., Ren, Y., Mohamed, I., Ali, M., Hassan, W., & Zeng, F. (2013). Assessment of trace and heavy metal distribution by four sequential extraction procedures in a contaminated soil. Soil Water Research, 8, 71–76.

  16. IUSS/ISRIC/FAO. (2006). World reference base for soil resources. Rome: FAO.

  17. Jalali, M., & Hemati, N. (2013). Chemical fractionation of seven heavy metals (Cd, Cu, Fe, Mn, Ni, Pb, and Zn) in selected paddy soils of Iran. Paddy and Water Environment, 11, 299–309.

  18. Kabala, C., & Singh, B. R. (2001). Fractionation and mobility of copper, lead and zinc in soil profiles in the vicinity of a copper smelter. Journal of Environmental Quality, 30(2), 485–492.

  19. Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed.). Boca Raton: CRC Press.

  20. Knox, A. S., Paller, M. H., Nelson, E. A., Specht, W. L., Halverson, N. V., & Gladden, J. B. (2006). Metal distribution and stability in constructed wetland sediment. Journal of Environmental Quality, 35(5), 1948–1959.

  21. Lair, G. J., Graf, M., Zehetner, F., & Gerzabek, M. H. (2008). Distribution of cadmium among geochemical fractions in floodplain soils of progressing development. Environmental Pollution, 156, 207–214.

  22. Langer, U., & Rinklebe, J. (2009). Lipid biomarkers for assessment of microbial communities in floodplain soils of the Elbe River (Germany). Wetlands, 29(3), 353–362.

  23. Lee, S. S., Lim, J. E., Abd El-Azeem, S. A. M., Choi, B., Oh, S. E., Moon, D. H., et al. (2013). Heavy metal immobilization in soil near abandoned mines using eggshell waste and rapeseed residue. Environmental Sciences and Pollution Research, 20, 1719–1726.

  24. Loeppert, R. H., & Inskeep, W. P. (1996). Iron. In D. L. Sparks et al. (Eds.), Methods of soil analysis (pp 639–664). Part 3: Chemical methods. Madison: ASA and SSSA.

  25. Ma, L. Q., & Rao, G. N. (1997). Chemical fractionation of cadmium, copper, nickel and zinc in contaminated soils. Journal of Environmental Quality, 26(1), 259–264.

  26. Mehra, O. P., & Jackson, M. L. (1960). Iron oxides removal from soils and clays by dithionate-citrate system buffered with sodium bicarbonate. Clays Clay Minerals, 7(2), 317–327.

  27. Merkx, O. K., Loch, J. P. G., Lima, A. T., Dijk, J. A., de Kreuk, J. F., & Kleingeld, P. J. (2013). The effectiveness of electro-remediation of aged, metal-contaminated sediment in relation to sequential extraction of metals. Water, Air, & Soil Pollution, 224, 1667–1673.

  28. Mihajlovic, J., Stärk, H.-J., & Rinklebe, J. (2014). Geochemical fractions of rare earth elements in two floodplain soil profiles at the Wupper River, Germany. Geoderma, 228–229, 160–172.

  29. Morgan, B., Rate, A. W., & Burton, E. D. (2012). Trace element reactivity in FeS-rich estuarine sediments: Influence of formation environment and acid sulfate soil drainage. Science of the Total Environment, 438, 463–476.

  30. Nannoni, F., Protano, G., & Riccobono, F. (2011). Fractionation and geochemical mobility of heavy elements in soils of a mining area in northern Kosovo. Geoderma, 161(1–2), 63–73.

  31. Nicoară, A., Neagoe, A., Stancu, P., de Giudici, G., Langella, F., Sprocati, A. R., et al. (2014). Coupled pot and lysimeter experiments assessing plant performance in microbially assisted phytoremediation. Environmental Sciences and Pollution Research. doi:10.1007/s11356-013-2489-9.

  32. Ok, Y. S., Lim, J. E., & Moon, D. H. (2011a). Stabilization of Pb and Cd contaminated soils and soil quality improvements using waste oyster shells. Environmental Geochemistry and Health, 33, 83–91.

  33. Ok, Y. S., Usman, A. R., Lee, S. S., Abd El-Azeem, S. A. M., Choi, B. S., Hashimoto, Y., et al. (2011b). Effect of rapeseed residue on cadmium and lead availability and uptake by rice plants in heavy metal contaminated paddy soil. Chemosphere, 85(4), 677–682.

  34. Osakwe, S. A. (2013). Chemical partitioning of iron, cadmium, nickel and chromium in contaminated soils of south-eastern Nigeria. Chemical Speciation & Bioavailability, 25, 71–78.

  35. Overesch, M., Rinklebe, J., Broll, G., & Neue, H. (2007). Metals and arsenic in soils and corresponding vegetation at Elbe river floodplains (Germany). Environmental Pollution, 145(3), 800–812.

  36. Palumbo, B., Angelone, M., Bellanca, A., Dazzi, C., Hauser, S., Neri, R., et al. (2000). Influence of inheritance and pedogenesis on heavy metal distribution in soils of Sicily, Italy. Geoderma, 95(3–4), 247–266.

  37. Pueyo, M., Mateu, J., Rigol, A., Vidal, M., López-Sánchez, J. F., & Rauret, G. (2008). Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils. Environmental Pollution, 152(2), 330–341.

  38. Rajaie, M. N., Karimian, J., & Yasrebi, S. (2008). Nickel transformation in two calcareous soil textural classes as affected by applied nickel sulfate. Geoderma, 144, 344–351.

  39. Rauret, G., Lopez-Sanchez, J. F., Sahuquillo, A., Rubio, R., Davidson, C., Ureb, A., et al. (1999). Improvement of the Community Bureau of Reference (BCR) three step sequential extraction rocedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1, 57–61.

  40. Rennert, T., Meißner, S., Rinklebe, J., & Totsche, K. U. (2010). Dissolved inorganic contaminants in a floodplain soil: comparison of in-situ soil solutions and laboratory methods. Water, Air, & Soil Pollution, 209, 489–500.

  41. Rinklebe, J., Marahrens, S., Böhnke, R., Amarell, U., & Neue, H.-U. (2000). Großmaßstäbige bodenkundliche Kartierung im Biosphärenreservat Mittlere Elbe. In K. Friese, B. Witter, G. Miehlich, & M. Rode (Eds.), Stoffhaushalt von Auenökosystemen. Böden und Hydrologie, Schadstoffe, Bewertungen (pp. 27–35). Berlin: Springer Verlag.

  42. Rinklebe, J., Franke, C., & Neue, H. U. (2007). Aggregation of floodplain soils as an instrument for predicting concentrations of nutrients and pollutants. Geoderma, 141(3–4), 210–223.

  43. Rocha, L., Rodrigues, S. M., Lopes, I., Soares, A. M. V. M., Duarte, A. C., & Pereira, E. (2011). The water-soluble fraction of potentially toxic elements in contaminated soils: relationships between ecotoxicity, solubility and geochemical reactivity. Chemosphere, 84, 1495–1505.

  44. Shaheen, S. M., Rinklebe, J., Rupp, H., & Meissner, R. (2014a). Temporal dynamics of soluble Cd, Co, Cu, Ni, and Zn and their controlling factor in a contaminated floodplain soil using undisturbed groundwater lysimeter. Environmental Pollution, 191, 223–231.

  45. Shaheen, S.M., Rinklebe, J., Frohne, T., White, J., DeLaune, R. (2014b). Biogeochemical factors governing Co, Ni, Se, and V dynamics in periodically flooded Egyptian North Nile Delta rice soils. Soil Science Society of America Journal, 78(3), 1065–1078.

  46. Soriano-Disla, J. M., Speir, T. W., Gómez, I., Clucas, L. M., McLaren, R. G., & Navarro-Pedreño, J. (2010). Evaluation of different extraction methods for the assessment of heavy metal bioavailability in various soils. Water, Air, & Soil Pollution, 213(1–4), 471–483.

  47. Sow, A. Y., Ismail, A., & Zulkifli, S. Z. (2013). Geofractionation of heavy metals and application of indices for pollution prediction in paddy field soil of Tumpat, Malaysia. Environmental Sciences and Pollution Research, 20, 8964–8973.

  48. Tessier, A., Campbell, P. G. C., & Blsson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 52, 45–53.

  49. Wälder, K., Wälder, O., Rinklebe, J., & Menz, J. (2008). Estimation of soil properties with geostatistical methods in floodplains. Archive of Agronomy and Soil Science, 54, 275–295.

  50. Weber, F.-A., Voeglin, A., & Kretzschmar, R. (2009). Multi-metal contaminant dynamics in temporarily flooded soil under sulfate limitation. Geochimica et Cosmochimica Acta, 73, 5513–5527.

  51. Zeien, H., & Brümmer, G. W. (1989). Chemische Extraktion zur Bestimmung von Schwermetallbindungsformen in Boden. Mitt Dtsch Bodenkundl Ges, 59, 505–510.

  52. Zeien, H., & Brümmer, G. W. (1991). Ermittlung der Mobilität und Bindungsformen von Schwermetallen in Böden mittels sequentieller Extraktion. Mitt Dtsch Bodenkundl Ges, 66, 439–442.

  53. Zhong, X., Zhou, S., Zhu, Q., & Zhao, Q. (2011). Fraction distribution and bioavailability of soil heavy metals in the Yangtze River Delta—a case study of Kunshan City in Jiangsu Province, China. Journal of Hazardous Materials, 198(1), 13–21.

  54. Zhou, G., Sun, B., Zeng, D., Wei, H., Liu, Z., & Zhang, B. (2014). Vertical distribution of trace elements in the sediment cores from major rivers in east China and its implication on geochemical background and anthropogenic effects. Journal of Geochemical Exploration, 139, 53–67.

  55. Zimmer, D. K., Kiersch, C., Baum, R., Meissner, R., Muller, G. J., & Leinweber, P. (2011). Scale-dependent variability of As and heavy metals in a River Elbe floodplain. Clean Soil Air Water, 39, 328–337.

Download references

Acknowledgments

We thank the German Academic Exchange Foundation (Deutscher Akademischer Austauschdienst, DAAD- GERSS program; Code number A1291166) and the Egyptian Science and Technology Development Fund (STDF-STF; Project ID: 5333) for financial support of the postdoctoral scholarship of Dr. S. Shaheen at the University of Wuppertal, Germany. We acknowledge Dr. M. Overesch for technical assistance.

Author information

Correspondence to Jörg Rinklebe.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplemental 1

(DOC 58 kb)

Supplemental 2

(DOC 62 kb)

Supplemental 3

(DOC 60 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rinklebe, J., Shaheen, S.M. Assessing the Mobilization of Cadmium, Lead, and Nickel Using a Seven-Step Sequential Extraction Technique in Contaminated Floodplain Soil Profiles Along the Central Elbe River, Germany. Water Air Soil Pollut 225, 2039 (2014). https://doi.org/10.1007/s11270-014-2039-1

Download citation

Keywords

  • Toxic metals
  • Availability
  • Geochemical fractions
  • Wetland soils