Phenolic Acid Sorption to Biochars from Mixtures of Feedstock Materials

  • K. E. Hall
  • M. J. Calderon
  • K. A. SpokasEmail author
  • L. Cox
  • W. C. Koskinen
  • J. Novak
  • K. Cantrell


In an effort to customize biochars for soil amendments, multiple feedstocks have been combined in various ratios prior to pyrolysis at 350 °C. The resulting variation in the chemistry and structure can affect the adsorption capacity of biochar and thus influence the bioavailability of many chemical compounds in the soil system including phenolic acids. This study examines the sorption of 14C-labeled ferulic acid, syringic acid, and chlorocatechol to four biochars prepared from individual feedstocks and four biochars produced from mixed feedstocks using batch equilibration. Pure feedstock biochar sorption followed switchgrass < swine solids < poultry litter < pine chip for both ferulic (K d = 1.4–75 L kg−1) and syringic acid (K d = 0.07–6.03 L kg−1). Sorption appeared to be influenced by the properties of the biochars as well as the structure of the chemicals. All biochar K d values, except pine chip, were consistently lower than that of the reference silt loam soil. The sorptive properties of biochars produced from combined feedstocks could not be predicted from their pure feedstock components, and sorption coefficients were both higher and lower than the individual parent materials’ biochars. Further research is necessary to understand the characteristics of these combination biochars, particularly their sorption, which this study has shown is not merely an average of its components.


Syringic acid Ferulic acid Sorption Allelopathy Feedstock Soil organic matter 


  1. Agblevor, F., & Besler, S. (1996). Inorganic compounds in biomass feedstocks. 1. Effect on the quality of fast pyrolysis oils. Energy & Fuels, 10(2), 293–298.CrossRefGoogle Scholar
  2. Antal, M., & Gronli, M. (2003). The art, science, and technology of charcoal production. Industrial & Engineering Chemistry Research, 42(8), 1619–1640.CrossRefGoogle Scholar
  3. Azargohar, R., & Dalai, A. K. (2008). Steam and KOH activation of biochar: experimental and modeling studies. Microporous and Mesoporous Materials, 110(2–3), 413–421.CrossRefGoogle Scholar
  4. Bhadoria, P. B. S. (2011). Allelopathy: a natural way towards weed management. American Journal of Experimental Agriculture, 1(1), 7–20.Google Scholar
  5. Blum, U. (1996). Allelopathic interactions involving phenolic acids. Journal of Nematology, 28(3), 259–267.Google Scholar
  6. Blum, U., Shafer, S., & Lehman, M. (1999). Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: concepts vs. an experimental model. Critical Reviews in Plant Sciences, 18(5), 673–693.CrossRefGoogle Scholar
  7. Brown, R., Kercher, A., Nguyen, T., Nagle, D., & Ball, W. (2006). Production and characterization of synthetic wood chars for use as surrogates for natural sorbents. Organic Geochemistry, 37(3), 321–333.CrossRefGoogle Scholar
  8. Brunauer, S., Emmett, P. H., & Teller, E. (1938). Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60, 309–319.CrossRefGoogle Scholar
  9. Cao, X., Ma, L., Liang, Y., Gao, B., & Harris, W. (2011). Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environmental Science & Technology, 45(11), 4884–4889.CrossRefGoogle Scholar
  10. Cecchi, A., Koskinen, W., Cheng, H., & Haider, K. (2004). Sorption-desorption of phenolic acids as affected by soil properties. Biology and Fertility of Soils, 39(4), 235–242.CrossRefGoogle Scholar
  11. Chan, K. Y., Van Zwieten, L., Meszaros, I., Downie, A., & Joseph, S. (2007). Agronomic values of greenwaste biochar as a soil amendment. Australian Journal of Soil Research, 45(8), 629–634.CrossRefGoogle Scholar
  12. Chen, B., & Chen, Z. (2009). Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere, 76(1), 127–133.CrossRefGoogle Scholar
  13. Chen, B., & Yuan, M. (2011). Enhanced sorption of polycyclic aromatic hydrocarbons by soil amended with biochar. Journal of Soils and Sediments, 11(1), 62–71.CrossRefGoogle Scholar
  14. Chun, Y., Sheng, G., Chiou, C., & Xing, B. (2004). Compositions and sorptive properties of crop residue-derived chars. Environmental Science & Technology, 38(17), 4649–4655.CrossRefGoogle Scholar
  15. Conner, A. H., & Rowe, J. B. (1975). Neutrals in southern pine tall oil. Journal of the American Oil Chemists Society, 52(9), 334–338.CrossRefGoogle Scholar
  16. Dalton, B. R., Blum, U., & Weed, S. B. (1989). Differential sorption of exogenously applied ferulic, p-coumaric, p-hydroxybenzoic, and vanillic acids in soil. Soil Science Society of America Journal, 53(3), 757–762.CrossRefGoogle Scholar
  17. Deenik, J. L., McClellan, T., Uehara, G., Antal, M. J., Jr., & Campbell, S. (2010). Charcoal volatile matter content influences plant growth and soil nitrogen transformations. Soil Science Society of America Journal, 74(4), 1259–1270.CrossRefGoogle Scholar
  18. Elmer, W. H., & Pignatello, J. J. (2011). Effect of biochar amendments on mycorrhizal associations and fusarium crown and root rot of asparagus in replant soils. Plant Disease, 95(8), 960–966.CrossRefGoogle Scholar
  19. Graber, E. R., Harel, Y. M., Kolton, M., Cytryn, E., Silber, A., David, D. R., et al. (2010). Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant and Soil, 337(1–2), 481–496.CrossRefGoogle Scholar
  20. Green, R. E. (1974). Pesticide-clay-water interactions. In W. D. Guenzi (Ed.), Pesticides in soil and water (pp. 3–38). Madison: Soil Sci. Soc. Amer. Inc.Google Scholar
  21. Gundale, M. J., & DeLuca, T. H. (2007). Charcoal effects on soil solution chemistry and growth of koeleria macrantha in the ponderosa pine/Douglas-fir ecosystem. Biology and Fertility of Soils, 43(3), 303–311.CrossRefGoogle Scholar
  22. Jones, R., & Payne, B. (1997). Clinical investigation and statistics in laboratory medicine. London: ACB Venture Publications.Google Scholar
  23. Jones, D. L., Rousk, J., Edwards-Jones, G., DeLuca, T. H., & Murphy, D. V. (2012). Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil Biology & Biochemistry, 45, 113–124.CrossRefGoogle Scholar
  24. Keech, O., Carcaillet, C., & Nilsson, M. C. (2005). Adsorption of allelopathic compounds by wood-derived charcoal: the role of wood porosity. Plant and Soil, 272(1-2), 291–300.CrossRefGoogle Scholar
  25. Kookana, R. S., Sarmah, A. K., Van Zwieten, L., Krull, E., & Singh, B. (2011). Biochar application to soil: agronomic and environmental benefits and unintended consequences. Advances in Agronomy, 112(112), 103–143.CrossRefGoogle Scholar
  26. Lehmann, J., & Joseph, S. (Eds.). (2009). Biochar for environmental management: science and technology. Earthscan.Google Scholar
  27. Lehmann, R., Cheng, H., & Harsh, J. (1987). Oxidation of phenolic-acids by soil iron and manganese oxides. Soil Science Society of America Journal, 51(2), 352–356.CrossRefGoogle Scholar
  28. Lodhi, M., Bilal, R., & Malik, K. (1987). Allelopathy in agroecosystems—wheat phytotoxicity and its possible roles in crop-rotation. Journal of Chemical Ecology, 13(8), 1881–1891.CrossRefGoogle Scholar
  29. Long, J. W., Laskoski, M., Peterson, G. W., Keller, T. M., Pettigrew, K. A., & Schindler, B. J. (2011). Metal-catalyzed graphitic nanostructures as sorbents for vapor-phase ammonia. Journal of Materials Chemistry, 21(10), 3477–3484. doi: 10.1039/c0jm03167d.CrossRefGoogle Scholar
  30. Mersie, W., & Singh, M. (1993). Phenolic-acids affect photosynthesis and protein-synthesis by isolated leaf-cells of velvet-leaf. Journal of Chemical Ecology, 19(7), 1293–1301.CrossRefGoogle Scholar
  31. Moreno-Castilla, C. (2004). Adsorption of organic molecules from aqueous solutions on carbon materials. Carbon, 42(1), 83–94. doi: 10.1016/j.carbon.2003.09.022.CrossRefGoogle Scholar
  32. Mukherjee, A., Zimmerman, A. R., & Harris, W. (2011). Surface chemistry variations among a series of laboratory-produced biochars. Geoderma, 163(3–4), 247–255.CrossRefGoogle Scholar
  33. Mukome, F. N. D., Zhang, X., Silva, L. C. R., Six, J., & Parikh, S. J. (2013). Use of chemical and physical characteristics to investigate trends in biochar feedstocks. Journal of Agricultural and Food Chemistry, 61(9), 2196–2204.CrossRefGoogle Scholar
  34. Ni, J., Pignatello, J. J., & Xing, B. (2012). Adsorption of aromatic carboxylate ions to charcoal black carbon is accompanied by proton exchange with water (vol 45, pg 9240, 2012). Environmental Science & Technology, 46(10), 5633.CrossRefGoogle Scholar
  35. Novak, J., Cantrell, K., Watts, D., & Johnson, M. (2013a). Designing relevant biochars to revitalize soil quality: current status and advances. In: Functions of Natural Organic Matter in Changing Environment (pp. 955–958). Netherlands: Springer.Google Scholar
  36. Novak, J. M., Cantrell, K. B., Watts, D. W., Busscher, W. J., & Johnson, M. G. (2013b). Designing relevant biochars as soil amendments using lignocellulosic-based and manure-based feedstocks. Journal of Soils and Sediments, 1–14.Google Scholar
  37. Okuno, T., Sonoyama, N., Hayashi, J. I., Li, C. Z., Sathe, C., & Chiba, T. (2005). Primary release of alkali and alkaline earth metallic species during the pyrolysis of pulverized biomass. Energy & Fuels, 19(5), 2164–2171.CrossRefGoogle Scholar
  38. Pandino, G., Lombardo, S., Mauromicale, G., & Williamson, G. (2011). Profile of polyphenols and phenolic acids in bracts and receptacles of globe artichoke (Cynara cardunculus var. scolymus) germplasm. Journal of Food Composition and Analysis, 24(2), 148–153.CrossRefGoogle Scholar
  39. Rajkovich, S. (2010). Biochar as an amendment to improve soil fertility. Research Honors thesis, Cornell University: Ithaca, NY.Google Scholar
  40. Rogovska, N., Laird, D., Cruse, R. M., Trabue, S., & Heaton, E. (2012). Germination tests for assessing biochar quality. Journal of Environmental Quality, 41(4), 1014–1022.CrossRefGoogle Scholar
  41. Ronsse, F., van Hecke, S., Dickinson, D., & Prins, W. (2013). Production and characterization of slow pyrolysis biochar: influence of feedstock type and pyrolysis conditions. Global Change Biology Bioenergy, 5(2), 104–115.CrossRefGoogle Scholar
  42. Schlőmann, M. (1994). Evolution of chlorocatechol catabolic pathways. Conclusions to be drawn from comparisons of lactone hydrolases. Biodegradation, 5, 301–321.CrossRefGoogle Scholar
  43. Shafeeyan, M. S., Daud, W. M. A. W., Houshmand, A., & Arami-Niya, A. (2011). Ammonia modification of activated carbon to enhance carbon dioxide adsorption: effect of pre-oxidation. Applied Surface Science, 257(9), 3936–3942.CrossRefGoogle Scholar
  44. Singh, B., Singh, B. P., & Cowie, A. L. (2010). Characterisation and evaluation of biochars for their application as a soil amendment. Australian Journal of Soil Research, 48(6–7), 516–525.CrossRefGoogle Scholar
  45. Spokas, K. A., Koskinen, W. C., Baker, J. M., & Reicosky, D. C. (2009). Impacts of woodchip biochar additions on greenhouse gas production and sorption/degradation of two herbicides in a minnesota soil. Chemosphere, 77(4), 574–581.CrossRefGoogle Scholar
  46. Sun, K., Keiluweit, M., Kleber, M., Pan, Z., & Xing, B. (2011a). Sorption of fluorinated herbicides to plant biomass-derived biochars as a function of molecular structure. Bioresource Technology, 102(21), 9897–9903.CrossRefGoogle Scholar
  47. Sun, K., Ro, K., Guo, M., Novak, J., Mashayekhi, H., & Xing, B. (2011b). Sorption of bisphenol A, 17 alpha-ethinyl estradiol and phenanthrene on thermally and hydrothermally produced biochars. Bioresource Technology, 102(10), 5757–5763.CrossRefGoogle Scholar
  48. Tharayil, N., Bhowmik, P., & Xing, B. (2006). Preferential sorption of phenolic phytotoxins to soil: implications for altering the availability of allelochemicals. Journal of Agricultural and Food Chemistry, 54(8), 3033–3040.CrossRefGoogle Scholar
  49. Turner, E. R. (1955). The effect of certain adsorbents on the nodulation of clover plants. Annals of Botany, 19, 149–160.Google Scholar
  50. Uchimiya, M., Wartelle, L. H., Klasson, K. T., Fortier, C. A., & Lima, I. M. (2011). Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. Journal of Agricultural and Food Chemistry, 59(6), 2501–2510.CrossRefGoogle Scholar
  51. Warnock, D. D., Lehmann, J., Kuyper, T. W., & Rillig, M. C. (2007). Mycorrhizal responses to biochar in soil—concepts and mechanisms. Plant and Soil, 300(1–2), 9–20.CrossRefGoogle Scholar
  52. Warnock, D. D., Mummey, D. L., McBride, B., Major, J., Lehmann, J., & Rillig, M. C. (2010). Influences of non-herbaceous biochar on arbuscular mycorrhizal fungal abundances in roots and soils: results from growth-chamber and field experiments. Applied Soil Ecology, 46(3), 450–456.CrossRefGoogle Scholar
  53. Weed, S. B., & Weber, J. B. (1974). Pesticide-organic matter interactions. In W. D. Guenzi (Ed.), Pesticides in soil and water (pp. 39–68). Madison: Soil Sci. Soc. Amer. Inc.Google Scholar
  54. Weston, L. (1996). Utilization of allelopathy for weed management in agroecosystems. Agronomy Journal, 88(6), 860–866.CrossRefGoogle Scholar
  55. Won, O. J., Uddin, M. R., Park, K. W., Pyon, J. Y., & Park, S. U. (2013). Phenolic compounds in sorghum leaf extracts and their effects on weed control. Allelopathy Journal, 31(1), 147–155.Google Scholar
  56. Yao, Y., Gao, B., Inyang, M., Zimmerman, A. R., Cao, X., Pullammanappallil, P., & Yang, L. (2011). Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. Journal of Hazardous Materials, 190(1), 501–507.CrossRefGoogle Scholar
  57. Yeasmin, R., Motoki, S., Yamamoto, S., & Nishihara, E. (2013). Allelochemicals inhibit the growth of subsequently replanted asparagus (Asparagus officinalis L.). Biological Agriculture & Horticulture, 29(3), 165–172.CrossRefGoogle Scholar
  58. Yu, X., Ying, G., & Kookana, R. S. (2009). Reduced plant uptake of pesticides with biochar additions to soil. Chemosphere, 76(5), 665–671.CrossRefGoogle Scholar
  59. Zhao, L., Cao, X., Masek, O., & Zimmerman, A. (2013a). Heterogeneity of biochar properties as a function of feedstock sources and production temperatures. Journal of Hazardous Materials, 256, 1–9.Google Scholar
  60. Zhao, L., Cao, X., Wang, Q., Yang, F., & Xu, S. (2013b). Mineral constituents profile of biochar derived from diversified waste biomasses: implications for agricultural applications. Journal of Environmental Quality, 42(2), 545–552.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland (outside the USA) 2014

Authors and Affiliations

  • K. E. Hall
    • 1
  • M. J. Calderon
    • 2
  • K. A. Spokas
    • 3
    Email author
  • L. Cox
    • 2
  • W. C. Koskinen
    • 3
  • J. Novak
    • 4
  • K. Cantrell
    • 4
  1. 1.Department of Soil Water and ClimateUniversity of MinnesotaSt. PaulUSA
  2. 2.CSIC-IRNASSevillaSpain
  3. 3.USDA-Agricultural Research ServiceSt. PaulUSA
  4. 4.USDA-Agricultural Research ServiceFlorenceUSA

Personalised recommendations