Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Impact of the Textile Dye Acid Blue 40 on the Periphyton of a Simulated Microecosystem

  • 230 Accesses

  • 1 Citations


Textile industry is responsible for a large amount of wastewater inappropriate for both human consumption and aquatic species. Aquatic ecosystems are way more sensitive to the release of textile wastewater, and the usage of Winogradsky columns is interesting, once they are a simulated aquatic ecosystem in which the growth of algae and other microorganisms can be observed. In this research, simulated textile effluents with the dye Acid Blue 40 were treated with an electrolytic reactor, for a later ecotoxicological evaluation using Winogradsky columns. The algal and microbial population and primary production were measured. The results have shown that the electrolytic treatment was satisfactory when it comes to color removal, but the presence of the treated effluent in the Winogradsky columns changed the microecosystem. The number of algae identified decreased when exposed to certain effluents, and some algae groups even disappeared, while others such as Cyanophyceae were benefited.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Bicudo, C. E. M., & Menezes, M. (2006). Gêneros de algas continentais do Brasil – Chave para identificações e descrições. São Carlos: Rima.

  2. Difco. (1984). Difco manual. Detroit: Difco Laboratories.

  3. Estrada, V., Di Maggio, J., & Diaz, M. S. (2011). Water sustainability: a systems engineering approach to restoration of eutrophic lakes. Computers & Chemical Engineering, 35(8), 1598–1613.

  4. Ferragut, C. (2004). Resposta das algas perifíticas e planctônicas á manipulação de nutrientes (N e P) em reservatório urbano. Phd Thesis (Plant Biology), Universidade Estadual Paulista. Rio Claro.

  5. Franceschini, I. M., Burliga, A. L., Reviers, B., Prado, J. F., & Rezig, S. H. (2010). Algas: Uma abordagem filogenética, taxonômica e ecológica. Porto Alegre: Artmed.

  6. Giorgetti, L., Talouizte, H., Merzouki, M., Caltavuturo, L., Geri, C., & Fraccinetti, S. (2011). Genotoxicity evaluation of effluents from textile industries of the region Fez-Boumane, Morrocco: a case study. Ecotoxicoly and Environmental Safety, 74(1), 2275–2283.

  7. Jin, X. C., Liu, G. Q., Xu, Z. H., & Tao, W. Y. (2007). Decolorization of a dye industry effluent by Aspergillus fumigatus XC6. Applied Microbiology and Biotechnology, 74(2), 39–43.

  8. Matsuzaki, M., Mucci, J. L. N., & Rocha, A. A. (2004). Comunidade fitoplanctônica de um pesqueiro na cidade de São Paulo. Revista de Saúde Pública, 38(5), 679–686.

  9. Murugesan, K., Dhamija, A., Nam, I., Kim, Y., & Chang, Y. (2007). Decolourization of reactive black 5 by lacase: optimization by response surface methodology. Dyes and Pigments, 75(1), 176–184.

  10. Pálaez-Cid, A. A., Velazquez-Ugalde, I., Herrera-González, A. M., & García-Serrano, J. (2013). Textile dyes removal from aquous solution using Opuntia ficus-indica fruit waste as adsorbant and its characterization. Journal of Environment Maneagment, 130(1), 90–97.

  11. Parsa, J. B., Golmirzaei, M., & Abbasi, M. (2014). Degradation of azo dye C.I. Acid Red 18 in aqueous solution by ozone-electrolysis process. Journal of Industrial and Engineering Chemistry, 20(2), 689–694.

  12. Ramjaun, S. N., Yuan, R., Wang, Z., & Liu, J. (2011). Degradation of reactive dyes by contact glow discharge electrolysis in the presence of Cl ions: kinetics and AOX formation. Electrochimica Acta, 58, 364–371.

  13. Sahu, A., Pancha, I., Jain, D., Paliwal, P., Ghosh, T., Patidar, S., Bhattacharya, S., & Mishra, S. (2013). Fatty acids as biomarkers of microalgae. Phytochemistry, 89(1), 53–58.

  14. Sousa, M. L., Moraes, P. B., & Bidoia, E. D. (2011). Photoeletrolytic system applied to remazol red brilliant degradation. Water Science and Technology, 63(4), 613–618.

  15. Sousa, M. L., Moraes, P. B., Lopes, P. R. M., Montagnolli, R. N., Angelis, D. F., & Bidoia, E. D. (2012). Textile dye treated photoelectrolytically and monitored by Winogradsky columns. Environmental Engineering Science, 29(1), 180–185.

  16. Tundisi, J. G., & Matsumura-Tundisi, T. (1992). Eutrophication of lakes and reservoirs: a comparative analysis, case studies, perspectives. In M. Cordeiro-Marino, M. A. Paiva-Azevedo, C. L. Sant’anna, N. Y. Tomita, & E. M. Plastino (Eds.), Algae and the environment: a general approach (pp. 1–34). São Paulo: Sociedade Brasileira de ficologia.

Download references


The authors acknowledge FAPESP for the financial support.

Author information

Correspondence to Ederio Dino Bidoia.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Sousa, M.L., Bidoia, E.D. Impact of the Textile Dye Acid Blue 40 on the Periphyton of a Simulated Microecosystem. Water Air Soil Pollut 225, 2025 (2014). https://doi.org/10.1007/s11270-014-2025-7

Download citation


  • Winogradsky
  • Microalgae
  • Textile
  • Electrolysis