Changes in the Phytoavailability of Nutrients in Mine Soils after Planting Trees and Amending with Wastes

  • V. Asensio
  • F. A. Vega
  • E. F. Covelo


The purpose of the present study was to evaluate the effect of planting trees (Pinus pinaster or Eucalyptus globulus) and amending with wastes (sewage sludges and paper mill residues) on the nutrient content of mine soils and under field conditions. The studied soils were located in a settling pond and a mine tailing within a former copper mine. The soil samples were analyzed for several physico-chemical characteristics and the concentration of nutrients. The untreated settling pond soil had levels of N and K adequate only for the growth of eucalyptuses and pines, and moreover, the concentration of Ca and P were undetectable. The untreated mine tailing soil presented the same condition, also with adequate levels of Ca and Mg for eucalyptuses and pines. Planting these trees increased the concentration of Mg in the settling pond up to adequate levels only for such trees. Amending with wastes increased the phytoavailable concentration of all nutrients up to adequate levels for most plant species. In conclusion, it is recommended to amend mine soils with wastes rich in nutrients and re-amend after some time because they raise them up to adequate levels for most plants but are depleted over time. It is possible to increase the concentration of all nutrients in mine soils by adding organic wastes, even to values adequate for most plant species.


Mine soil Eucalyptus globulus Phytoavailable nutrients Pinus pinaster Waste amendments 



This work was supported by the Spanish Ministry of Education and Science through project CGL2009-07843 and a Ramón y Cajal contract awarded to F.A. Vega and by the University of Vigo through a predoctoral fellowship awarded to V. Asensio. We also thank the anonymous reviewer for their comments, which helped to improve the quality of this article.


  1. Adams, M. A., Attiwill, P. M., & Atitiwil, P. M. (1982). Nitrate reductase activity and growth response of forest species to ammonium and nitrate sources of nitrogen. Plant and Soil, 66(3), 373–381. - Martinus Nijhoff/Dr. W. Junk Publishers. doi: 10.1007/BF02183803.
  2. AEMET. (2013). Valores Climatológicos Normales. Santiago de Compostela Aeropuerto. Retrieved September 30, 2013, from
  3. Alvarez, E., Fernández Marcos, M. L., Torrado, V., & Fernández Sanjurjo, M. J. (2008). Dynamics of macronutrients during the first stages of litter decomposition from forest species in a temperate area (Galicia, NW Spain). Nutrient Cycling in Agroecosystems, 80(3), 243–256. doi: 10.1007/s10705-007-9140-4. Affiliation: Dpto. de Edafología Y Química Agrícola, Universidad de Santiago de Compostela, Campus Universitario, Lugo 27002, Spain; Correspondence Address: Alvarez, E.; Dpto. de Edafología Y Química Agrícola, Universidad de Santiago de Compostela, Campus.CrossRefGoogle Scholar
  4. Asensio, V., Vega, F. A., Andrade, L., & Covelo, E. F. (2011). Tree vegetation to improve physico-chemical properties in bare mine soils. Fresenius Environmental Bulletin, 20(12a), 3295–3303.Google Scholar
  5. Asensio, V., Vega, F. A., Andrade, M. L., & Covelo, E. F. (2013). Tree vegetation and waste amendments to improve the physical condition of copper mine soils. Chemosphere, 90(2), 603–610. doi: 10.1016/j.chemosphere.2012.08.050.CrossRefGoogle Scholar
  6. Brañas, J., González-Río, F., & Merino, A. (2000). Contenido y distribución de nutrientes en plantaciones de Eucalyptus globulus del noroeste de la península Ibérica. Investigación Agraria Sistemas y Recursos Forestales, 9(2), 317–335.Google Scholar
  7. Bremner, J. M. (1996). Nitrogen-total. In D. L. Sparks (Ed.), Methods of soil analysis (Vol. III, pp. 1085–1121). Madison: SSSA.Google Scholar
  8. Bremner, J. M., & Keeney, D. R. (1965). Steam distillation methods for determination of ammonium, nitrate and nitrite. Analytica Chimica Acta, 32, 485–495. doi: 10.1016/S0003-2670(00)88973-4.CrossRefGoogle Scholar
  9. Calace, N., Campisi, T., Iacondini, A., Leoni, M., Petronio, B. M., & Pietroletti, M. (2005). Metal-contaminated soil remediation by means of paper mill sludges addition: chemical and ecotoxicological evaluation. Environmental Pollution, 136(3), 485–492. doi: 10.1016/j.envpol.2004.12.014.CrossRefGoogle Scholar
  10. Camps Arbestain, M., Madinabeitia, Z., Anza Hortalà, M., Macías-García, F., Virgel, S., & Macías, F. (2008). Extractability and leachability of heavy metals in Technosols prepared from mixtures of unconsolidated wastes. Waste Management, 28(12), 2653–2666. doi: 10.1016/j.wasman.2008.01.008.CrossRefGoogle Scholar
  11. Conesa, H. M., Faz, Á., García, G., & Arnaldos, R. (2007). Heavy metal contamination in the semiarid area of Cartagena-La Unión (SE Spain) and its implications for revegetation. Fresenius Environmental Bulletin, 16(9 A), 1076–1081. Affiliation: Área de Edafología Y Química Agrícola, Dept. Ciencia Y Tecnología Agraria, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 52, 30203 Cartagena, Spain; Affiliation: Soil Protection Group, Institute of Terrestrial Ecosystems, Swiss Fe. Retrieved from Accessed 21 April 2014.
  12. Eriksson, C. P., & Holmgren, P. (1996). Estimating stone and boulder content in forest soils—evaluating the potential of surface penetration methods. Catena, 28(1-2), 121–134. doi: 10.1016/S0341-8162(96)00031-8. Affiliation: Swed. Univ. of Agricultural Sciences, Department of Forest Soils, PO Box 7001, 75007 Uppsala, Sweden; Correspondence Address: Holmgren, P.; Department of Forest Soils, Swedish Univ. of Agricultural Sci., PO Box 7001, 75007 Uppsala, Sweden.CrossRefGoogle Scholar
  13. Fölster, H., & Khanna, P. K. (1997). Dynamics of nutrient supply in plantation soils. In A. G. Nambiar & E. K. S. Brown (Eds.), Management of soil nutrient and water in tropical plantation forests (pp. 339–378). Camberra: Australian Centre for International Agricultural Research (ACIAR).Google Scholar
  14. Hao, X., Ball, B. C., Culley, J. L. B., Carter, M. R., & Parkin, G. W. (2008). Soil density and porosity. In M. R. Carter & E. G. Gregorich (Eds.), Soil sampling and methods of analysis (pp. 743–759). Boca Raton: Canadian Society of Soil Science.Google Scholar
  15. Harrison, R. B., Henry, C. L., Cole, D. W., & Xue, D. (1995). Long-term changes in organic matter in soils receiving applications of municipal biosolids. In W. W. McFee & J. M. Kelly (Eds.), Carbon forms and functions in forest soils (pp. 139–146). Madison: SSSA.Google Scholar
  16. Hendershot, W. H., & Duquette, M. (1986). A simple barium chloride method for determining cation exchange capacity and exchangeable cations. Soil Science Society of America Journal, 50(3), 605–608. Retrieved from Accessed 21 April 2014.
  17. Houba, V. J. G., Temminghoff, E. J. M., Gaikhorst, G. A., & Van Vark, W. (2000). Soil analysis procedures using 0.01 M calcium chloride as extraction reagent. Communications in Soil Science and Plant Analysis, 31(9-10), 1299–1396. Accessed 21 April 2014.
  18. Karami, N., Clemente, R., Moreno-Jiménez, E., Lepp, N. W., & Beesley, L. (2011). Efficiency of green waste compost and biochar soil amendments for reducing lead and copper mobility and uptake to ryegrass. Journal of Hazardous Materials, 191(1-3), 41–48. doi: 10.1016/j.jhazmat.2011.04.025. Affiliation: Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom; Affiliation: CEBAS, CSIC, PO Box 164, 30100 Espinardo, Murcia, Spain; Affiliation: Universidad Autónoma de Madrid, 28049 Madrid, Spain; Affiliation: 35 Victoria.CrossRefGoogle Scholar
  19. Kramer, P. A., Zabowski, D., Scherer, G., & Everett, R. L. (2000). Native plant restoration of copper mine tailings: I. Substrate effect on growth and nutritional status in a greenhouse study. Journal of Environmental Quality, 29(6), 1762–1769. doi: 10.2134/jeq2000.00472425002900060006x.CrossRefGoogle Scholar
  20. Kroetsch, D., & Wang, C. (2008). Particle size distribution. In M. R. Carter & G. R. Gregorich (Eds.), Soil sampling and methods of analysis (Vol. 2, pp. 713–726). Boca Raton: Canadian Society of Soil Science, CRC.Google Scholar
  21. Lottermoser, B. G., Ashley, P. M., & Munksgaard, N. C. (2008). Biogeochemistry of Pb-Zn gossans, northwest Queensland, Australia: implications for mineral exploration and mine site rehabilitation. Applied Geochemistry, 23(4), 723–742. doi: 10.1016/j.apgeochem.2007.12.001. Affiliation: School of Earth and Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia; Affiliation: Earth Sciences, University of New England, Armidale, NSW 2351, Australia; Affiliation: School of Earth and Environmental Sciences.CrossRefGoogle Scholar
  22. Macías, F., & Calvo de Anta, R. (2009). Niveles genéricos de referencia de metales pesados y otros elementos traza en los suelos de Galicia. Xunta de Galicia. Spain: Xunta de Galicia.Google Scholar
  23. Madeira, M., & Pereira, J. S. (1990). Productivity, nutrient immobilization and soil chemical properties in an Eucalyptus globulus plantation under different irrigation and fertilization regimes. Water, Air, and Soil Pollution, 54, 621–634.Google Scholar
  24. Marx, E. S., Hart, T., & Stevens, R. G. (1999). Soil test interpretation guide (p. 7). Oregon, USA.Google Scholar
  25. N’Dayegamiye, A. (2006). Mixed paper mill sludge effects on corn yield, nitrogen efficiency, and soil properties. Agronomy Journal, 98(6), 1471–1478. Accessed 21 April 2014.
  26. Nikolic, N., Kostic, L., Djordjevic, A., & Nikolic, M. (2011). Phosphorus deficiency is the major limiting factor for wheat on alluvium polluted by the copper mine pyrite tailings: a black box approach. Plant and Soil, 339(1), 485–498. doi: 10.1007/s11104-010-0605-x. Affiliation: Institute for Multidisciplinary Research (IMSI), University of Belgrade, Kneza Viseslava 1, 11030 Belgrade, Serbia; Affiliation: Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade, Serbia; Correspondence Address: Nikolic, M.CrossRefGoogle Scholar
  27. Olsen, S. R., Cole, C. V, Watanabe, F. S., & Dean, L. A. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture, Circular 9.Google Scholar
  28. Pérez-de-Mora, A., Madrid, F., Cabrera, F., & Madejón, E. (2007). Amendments and plant cover influence on trace element pools in a contaminated soil. Geoderma, 139(1-2), 1–10. doi: 10.1016/j.geoderma.2006.12.001. Affiliation: Instituto de Recursos Naturales y Agrobiología, Av. Reina Mercedes 10, 41080 Sevilla, Spain; Correspondence Address: Madejón, E.; Instituto de Recursos Naturales y Agrobiología, Av. Reina Mercedes 10, 41080 Sevilla, Spain; email: emadejon@irn.CrossRefGoogle Scholar
  29. Pichtel, J. R., Dick, W. A., & Sutton, P. (1994). Comparison of amendments and management practices for long-term reclamation of abandoned mine lands. Journal of Environmental Quality, 23(4), 766–772. doi: 10.2134/jeq1994.00472425002300040022x. Affiliation: Dep of Agronomy, Ohio State Univ., Wooster, OH 44691, United States; Correspondence Address: Dick, W.A.; Dep of Agronomy, Ohio State Univ., Wooster, OH 44691, United States.CrossRefGoogle Scholar
  30. Porta, J. (1986). Técnicas y experimentos en Edafología. Barcelona: Collegi Oficial D’Enginyers Agronoms de Catalunya.Google Scholar
  31. Santibáñez, C., Ginocchio, R., & Teresa Varnero, M. (2007). Evaluation of nitrate leaching from mine tailings amended with biosolids under Mediterranean type climate conditions. Soil Biology and Biochemistry, 39(6), 1333–1340. doi: 10.1016/j.soilbio.2006.12.009. Affiliation: Centro de Investigación Minera y Metalúrgica, Parque Antonio Rabat 6500, Vitacura, Santiago, Chile; Affiliation: Facultad de Ciencias Agronómicas, Universidad de Chile, Santa Rosa 11315, Santiago, Chile; Correspondence Address: Santibáñez, C.CrossRefGoogle Scholar
  32. Sardans, J., & Peñuelas, J. (2013). Plant-soil interactions in Mediterranean forest and shrublands: impacts of climatic change. Plant and Soil, 365(1–2), 1–33. doi: 10.1007/s11104-013-1591-6.CrossRefGoogle Scholar
  33. Schwab, P., Zhu, D., & Banks, M. K. (2007). Heavy metal leaching from mine tailings as affected by organic amendments. Bioresource Technology, 98(15), 2935–2941. doi: 10.1016/j.biortech.2006.10.012. Affiliation: Department of Agronomy, Purdue University, West Lafayette, IN 47907, United States; Affiliation: Department of Agronomy, Kansas State University, Manhattan, KS 66506, United States; Affiliation: School of Civil Engineering, Purdue University.CrossRefGoogle Scholar
  34. Temes, S. B. (1985). Efectos Ecológicos Del Eucalyptus Globulus en Galicia: Estudio Comparativo con Pinus Pinaster y Quercus Robur. Spain: Ministerio de Agricultura, Pesca y Alimentación, Instituto Nacional de Investigaciones Agrarias. Retrieved from
  35. Thomas, G. W. (1982). Exchangeable cations. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis. Part 1 (Vol. 2, pp. 159–165). Madison: ASA and SSSA.Google Scholar
  36. Tripathy, S., Bhattacharyya, P., Equeenuddin, S. M., Kim, K., & Kulkarni, H. D. (2008). Comparison of microbial indicators under two water regimes in a soil amended with combined paper mill sludge and decomposed cow manure. Chemosphere, 71(1), 168–175. doi: 10.1016/j.chemosphere.2007.10.042.CrossRefGoogle Scholar
  37. USDA. (1998). Soil quality indicators. Bulk density. (Vol. 2012, p. 2). Retrieved from
  38. Vega, F. A., Covelo, E. F., Andrade, M. L., & Marcet, P. (2004). Relationships between heavy metals content and soil properties in minesoils. Analytica Chimica Acta, 524(1-2 SPEC. ISS), 141–150. doi: 10.1016/j.aca.2004.06.073.CrossRefGoogle Scholar
  39. Vega, F. A., Covelo, E. F., & Andrade, M. L. (2005). Limiting factors for reforestation of mine spoils from Galicia (Spain). Land Degradation & Development, 16(1), 27–36. doi: 10.1002/ldr.642.CrossRefGoogle Scholar
  40. Yang, B., Shu, W. S., Ye, Z. H., Lan, C. Y., & Wong, M. H. (2003). Growth and metal accumulation in vetiver and two Sesbania species on lead/zinc mine tailings. Chemosphere, 52(9), 1593–1600. Accessed 21 April 2014.
  41. Zanuzzi, A., Arocena, J. M., van Mourik, J. M., & Faz Cano, A. (2009). Amendments with organic and industrial wastes stimulate soil formation in mine tailings as revealed by micromorphology. Geoderma, 154(1-2), 69–75. doi: 10.1016/j.geoderma.2009.09.014. Affiliation: Sustainable Use, Management and Remediation of Soil and Water Research Group, Agrarian Science and Technology Department, Technical University of Cartagena, Paseo Alfonso XIII, 52, 30203 Cartagena, Murcia, Spain; Affiliation: University of No: Elsevier B.V.CrossRefGoogle Scholar
  42. Zechmeister-Boltenstem, A., & Zechmeister-Boltenstem, S. (2007). Denitrification and N-cycling in forest ecosystems. In H. Bothe, S. J. Ferguson, & W. E. Newton (Eds.), Biology of the nitrogen cycle (pp. 343–358). Amsterdam: Elsevier.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Plant Biology and Soil Science, Faculty of BiologyUniversity of VigoVigoSpain

Personalised recommendations