Heavy Metal and Arsenic Resistance of the Halophyte Atriplex halimus L. Along a Gradient of Contamination in a French Mediterranean Spray Zone

  • Jacques Rabier
  • Isabelle Laffont-Schwob
  • Anca Pricop
  • Ahlem Ellili
  • Gabriel D’Enjoy-Weinkammerer
  • Marie-Dominique Salducci
  • Pascale Prudent
  • Brahim Lotmani
  • Alain Tonetto
  • Véronique Masotti


Elements uptake, histological distributions as well as mycorrhizal and physiological statuses of Atriplex halimus were determined on trace metal and metalloid polluted soils from the surrounding spray zones of a former lead smelter in the South-East coast of Marseille (France). Analyses of heavy metal and arsenic distribution in soil and plant organs showed that A. halimus tolerance is largely due to exclusion mechanisms. No specific heavy metal concentration in leaf or root tissues was observed. However, accumulation of salts (NaCl, KCl, Mg and Ca salts) on leaf bladders and peripheral tissues of roots was observed and may compete with metal element absorption. Occurrence of endomycorrhizal structures was detected in roots and may contribute to lower element transfer from root into the aerial parts of plants. The non-destructive measurements of leaf epidermal chlorophylls, flavonols and phenols showed a healthy state of the A. halimus population on the metal and metalloid polluted sites. Considering the low metal bioaccumulation and translocation factors along with a reduced metal stress diagnosis, A. halimus appeared as a good candidate for phytostabilization of trace metals and metalloids and notably arsenic in contaminated soils of the Mediterranean spray zone. However, its invasive potential has to be determined before an intensive in situ use.


Mediterranean saltbush Root symbioses Inorganic contamination Phytostabilization Salt-affected soils Non-invasive sensors 


  1. Abbad, A., Cherkaoui, M., Wahid, N., El Hadrami, A., & Benchaabane, A. (2004). Variabilités phénotypique et génétique de trois populations naturelles d’Atriplex halimus. Comptes Rendus Biologies, 327, 371–380.CrossRefGoogle Scholar
  2. Abou Jaoudé, R., Pricop, A., Laffont-Schwob, I., Prudent, P., Rabier, J., Masotti, V., De Dato, G., & De Angelis, P. (2012). Evaluating the potential use of Tamarix gallica L. for phytoremediation practices in heavy-metal polluted soils. Geophysical Research Abstracts, 14, EGU2012–EGU12887.Google Scholar
  3. Affholder, M. C., Prudent, P., Masotti, V., Coulomb, B., Rabier, J., Nguyen-The, B., & Laffont-Schwob, I. (2013). Transfer of metals and metalloids from soil to shoots in wild rosemary (Rosmarinus officinalis L.) growing on a former lead smelter site: human exposure risk. Science of the Total Environment, 454–455, 219–229.CrossRefGoogle Scholar
  4. Affholder, M.C., Pricop, A.-D., Laffont-Schwob, I. Coulomb, B., Rabier, J., Borla, A., Demelas, C., & Prudent, P. (2014). As, Pb, Sb and Zn transfers from soil to root of wild rosemary: do native symbionts matter? Plant and Soil. doi:10.1007/s11104-014-2135-4.
  5. Agati, G., Cerovic, Z. G., Pinelli, P., & Tattini, M. (2011). Light-induced accumulation of ortho-dihydroxylated flavonoids as non-destructively monitored by chlorophyll fluorescence excitation techniques. Environmental and Experimental Botany, 73, 3–9.CrossRefGoogle Scholar
  6. Aguilera, L. E., Gutierrez, J. R., & Moreno, R. J. (1998). Vesicular arbuscular mycorrhizae associated with saltbushes Atriplex spp. (Chenopodiaceae) in the Chilean arid zone. Revista Chilena de Historia Natural, 71, 291–302.Google Scholar
  7. Allen, M. F. (1983). Formation of arbuscular mycorrhizae in Atriplex gardneri, Chenopodiaceae: seasonal response in a cold desert. Mycologia, 75, 773–776.CrossRefGoogle Scholar
  8. Arnao, M. B., & Hernández-Ruiz, J. (2009). Protective effect of melatonin against chlorophyll degradation during the senescence of barley leaves. Journal of Pineal Research, 46(1), 58–63.CrossRefGoogle Scholar
  9. Asghari, H. R., Marschner, P., Smith, S. E., & Smith, F. A. (2005). Growth response of Atriplex nummularia to inoculation with arbuscular mycorrhizal fungi at different salinity levels. Plant and Soil, 273, 245–256.CrossRefGoogle Scholar
  10. Baize, D. (1988). Guide des analyses courantes en pédologie. Paris: Institut de la Recherche Agronomique.Google Scholar
  11. Bajji, M., Kinet, J. M., & Lutts, S. (1998). Salt stress effects on roots and leaves of Atriplex halimus L. and their corresponding callus cultures. Plant Science, 137, 131–142.CrossRefGoogle Scholar
  12. Bajji, M., Kinet, J. M., & Lutts, S. (2002). Osmotic and ionic effects of NaCl on germination, early seedling growth, and ion content of Atriplex halimus (Chenopodiaceae). Canadian Journal of Botany, 80, 297–304.CrossRefGoogle Scholar
  13. Baker, A. J. M., & Brooks, R. R. (1989). Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery, 1, 81–126.Google Scholar
  14. Barrow, J. R., & Aaltonen, R. E. (2001). Evaluation of the internal colonization of Atriplex canescens (Pursh) Nutt. roots by dark septate fungi and the influence of host physiological activity. Mycorrhiza, 11, 199–205.CrossRefGoogle Scholar
  15. Becker, W., & Apel, K. (1993). Differences in gene expression between natural and artificially induced leaf senescence. Planta, 189, 74–79.CrossRefGoogle Scholar
  16. Bidel, L. P. R., Meyer, S., Goulas, Y., Cadot, Y., & Cerovic, Z. G. (2007). Responses of epidermal phenolic compounds to light acclimation: in vivo qualitative and quantitative assessment using chlorophyll fluorescence. Journal of Experimental Botany, 58, 1753–1760.CrossRefGoogle Scholar
  17. Cerovic, Z. G., Moise, N., Agati, G., Latouche, G., Ben Ghozlen, N., & Meyer, S. (2008). New portable optical sensors for the assessment of winegrape phenolic maturity based on berry fluorescence. Journal of Food Composition and Analysis, 21, 650–654.CrossRefGoogle Scholar
  18. Christie, P., Li, X., & Chen, B. (2004). Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant and Soil, 261, 209–217.CrossRefGoogle Scholar
  19. Clijsters, H., & Assche, F. (1985). Inhibition of photosynthesis by heavy metals. Photosynthesis Research, 7, 31–40.CrossRefGoogle Scholar
  20. Cotruvo, J. A. (2005). Water desalinization processes and associated health and environmental issues. Water Conditioning and Purification, 1, 13–17.Google Scholar
  21. Dietl, C., Reifenhäuser, W., & Peichl, L. (1997). Association of antimony with traffic occurrence in airborne dust, deposition and accumulation in standardized grass cultures. Science of the Total Environment, 205(2–3), 235–244.CrossRefGoogle Scholar
  22. El Omari, B., Fleck, I., Aranda, X., Abadía, A., Cano, A., Marino, B., & Arnao, C. (2003). Total antioxidant activity in Quercus ilex resprouts after fire. Plant Physiology and Biochemistry, 41, 41–47.CrossRefGoogle Scholar
  23. Filippi, O., & Aronson, J. (2010). Plantes invasives en région méditerranéenne: quelles restrictions d'utilisation préconiser pour les jardins et les espaces verts? Ecologia Mediterranea, 36, 31–54.Google Scholar
  24. Foster, S., Maher, W., Krikowa, F., Telford, K., & Ellwood, M. (2005). Observations on the measurement of total antimony and antimony species in algae, plant and animal tissues. Journal of Environmental Monitoring, 7, 1214–1219.CrossRefGoogle Scholar
  25. Institut national de l’information géographique et forestière (IGN). (1926, 1961) France & IGNF_PVA_1-0__1926-08-06__C3145-0351_1926_NP8_2050, scale 1: 9.916,IGNF_PVA_1-0__1961-03-25__C3245-0371_CDP1700_9055, scale 1: 8.975, 13008, Marseille 8e Arrondissement retrieved from http://geoportail.gouv.fr. Accessed 6 May 2013.
  26. GPS visualizer. (2013). http://www.gpsvisualizer.com/. Accessed 10 May 2013.
  27. Grigore, M.-N., & Toma, C. (2010). Salt secreting structures of halophytes. An integrative approach, Romanian Academic Press, Bucharest, 290 pp (in Romanian, extended summary in English). ISBN 978-973-27-1911-4.Google Scholar
  28. He, X., Mouratov, S., & Steinberger, Y. (2002). Spatial distribution and colonization of arbuscular mycorrhizal fungi under the canopies of desert halophytes. Arid Land Research and Management, 16, 149–160.CrossRefGoogle Scholar
  29. Heywood, V., & Brunel, S. (2008). Code of conduct on horticulture and invasive alien plants. Council of Europe Convention on the Conservation of European Wildlife and Natural Habitats Standing Committee 28th meeting Strasbourg, 24–27 November 2008.Google Scholar
  30. Hu, Y., & Schmidhalter, U. (2005). Drought and salinity: a comparison of their effects on mineral nutrition of plants. Journal of Plant Nutrition and Soil Science, 168, 541–549.CrossRefGoogle Scholar
  31. Johnson-Green, P. C., Kenkel, N. C., & Booth, T. (1995). Distribution and phenology of arbuscular-mycorrhizae along a salinity gradient at an inland salt pan. Canadian Journal of Botany, 73, 1318–1327.CrossRefGoogle Scholar
  32. Jumpponen, A. (2001). Dark septate endophytes—are they mycorrhizal? Mycorrhiza, 11, 207–211.CrossRefGoogle Scholar
  33. Kamaludeen, S. P. B., & Ramasamy, K. (2008). Rhizoremediation of metals: harnessing microbial communities. Indian Journal of Microbiology, 48, 80–88.CrossRefGoogle Scholar
  34. Kessler, J. J. (1990). Atriplex forage as a dry season supplementation feed for sheep in the Montane Plains of the Yemen Arab Republic. Journal of Arid Environments, 19, 225–234.Google Scholar
  35. Khavari-Nejad, R. A., Bujar, M., & Attaran, E. (2006). Evaluation of anthocyanin contents under salinity (NaCl) stress in Bellis perennis L. In M. A. Khan & D. J. Weber (Eds.), Ecophysiology of High Salinity Tolerant Plants, Series: Tasks for Vegetation Science (pp. 127–134). New York: Springer.CrossRefGoogle Scholar
  36. Kronzucker, H. J., & Britto, D. T. (2010). Sodium transport in plants: a critical review. New Phytologist, 189, 54–81.CrossRefGoogle Scholar
  37. Laffont-Schwob, I., Dumas, P. J., Pricop, A., Rabier, J., Miché, L., Affre, L., Masotti, V., Prudent, P., & Tatoni, T. (2011a). Insights on metal-tolerance and symbionts of the rare species Astragalus tragacantha aiming at phytostabilization of polluted soils and plant conservation. Ecologia Mediterranea, 37, 57–62.Google Scholar
  38. Laffont-Schwob, I., D’Enjoy-Weinkammerer, G., Pricop, A., Prudent, P., Masotti, V., & Rabier, J. (2011b). Evaluation of a potential candidate for heavy metal phytostabilization in polluted sites of the Mediterranean littoral (SE Marseille): endomycorrhizal status, fitness biomarkers and metal content of Atriplex halimus spontaneous populations. Ecological Questions, 14, 89–90.Google Scholar
  39. Lasalle, J.L. (2007). Présence de plomb et d’arsenic sur le littoral sud de Marseille: une etude de santé (juillet 2005). INVS report.Google Scholar
  40. Le Houérou, H. N. (1992). The role of saltbushes (Atriplex spp.) in arid lands rehabilitation in the Mediterranean basin: a review. Agroforestry Systems, 18, 107–148.CrossRefGoogle Scholar
  41. Lefèvre, I., Marchal, G., Meerts, P., Corréal, E., & Lutts, S. (2009). Chloride salinity reduces cadmium accumulation by the Mediterranean halophyte species Atriplex halimus L. Environmental and Experimental Botany, 65, 142–152.CrossRefGoogle Scholar
  42. Lotmani, B., Fatarna, L., Berkani, A., Rabier, J., Prudent, P., & Laffont-Schwob, I. (2011). Selection of Algerian populations of the Mediterranean saltbush, Atriplex halimus, tolerant to high concentrations of lead, zinc, and copper for phytostabilization of heavy metal-contaminated soils. The European Journal of Plant Science and Biotechnology, 5, 20–26.Google Scholar
  43. Lutts, S., Lefèvre, I., Delpérée, C., Kivits, S., Dechamps, C., Robledo, A., & Correal, E. (2004). Heavy metal accumulation by the halophyte species Mediterranean saltbush. Journal of Environmental Quality, 33, 1271–1279.CrossRefGoogle Scholar
  44. Manousaki, E., & Kalogerakis, N. (2009). Phytoextraction of Pb and Cd by the Mediterranean saltbush (Atriplex halimus L.): metal uptake in relation to salinity. Environmental Science and Pollution Research, 16, 844–854.CrossRefGoogle Scholar
  45. Manousaki, E., & Kalogerakis, N. (2011). Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Industrial and Engineering Chemical Research, 50, 656–660.CrossRefGoogle Scholar
  46. Martinez, J. P., Lutts, S., Schanck, A., Bajji, M., & Kinet, J. M. (2004). Is osmotic adjustment required for water stress resistance in the Mediterranean shrub Atriplex halimus L.? Journal of Plant Physiology, 161, 1041–1051.CrossRefGoogle Scholar
  47. Mateos-Naranjo, E., Andrades-Moreno, L., Cambrollé, J., & Perez-Martin, A. (2013). Assessing the effect of copper on growth, copper accumulation and physiological responses of grazing species Atriplex halimus: ecotoxicological implications. Ecotoxicological and Environmental Safety, 90, 136–142.CrossRefGoogle Scholar
  48. McArthur, E.D., & Sanderson, C. (1984). Distribution, systematics and evolution of Chenopodiaceae: an overview. In A.R Tiedemann., E.D. McArthur, H.C. Stutz, R. Stevens, K.L. Johnson (Eds.), Proceedings of the symposium on the biology of Atriplex and related Chenopods (pp. 14-24). US Department of Agriculture, Forest Service, USA.Google Scholar
  49. Mendez, M. O., & Maier, R. M. (2008). Phytoremediation of mine tailings in temperate and arid environments. Reviews in Environmental Science and Biotechnology, 7, 47–59.CrossRefGoogle Scholar
  50. Ortíz-Dorda, J., Martínez-Mora, C., Correal, E., Simón, B., & Cenis, J. L. (2005). Genetic structure of Atriplex halimus populations in the Mediterranean Basin. Annals of Botany, 95, 827–834.CrossRefGoogle Scholar
  51. Osmond, C. B., Björkman, O., & Anderson, D. J. (1980). Physiological processes in plant ecology: towards a synthesis with Atriplex. Berlin: Springer-Verlag.CrossRefGoogle Scholar
  52. Phillips, J. M., & Hayman, D. S. (1970). Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Transactions of the British Mycological Society, 55, 159–161.CrossRefGoogle Scholar
  53. Pourrat, Y., & Dutuit, P. (1994). Etude précoce des effets morphologiques et physiologiques du rapport sodium/calcium in vitro sur une population d’Atriplex halimus. In AUPLEF—UREF (Ed.), Quel Avenir pour l’Amélioration des Plantes? (pp. 283–295). Paris: John Libbey Eurotext.Google Scholar
  54. Rabier, J., Laffont-Schwob, I., Notonier, R., Fogliani, B., & Bouraïma-Madjebi, S. (2008). Anatomical element localization by EDXS in Grevillea exul var. exul under Nickel stress. Environmental Pollution, 156, 1156–1163.CrossRefGoogle Scholar
  55. Sawalha, M. F., Peralta-Videa, J. R., Sanchez-Salcido, B., & Gardea-Torresdey, J. L. (2009). Sorption of hazardous metals from single and multi-element solutions by saltbush biomass in batch and continuous mode: interference of calcium and magnesium in batch mode. Journal of Environmental Management, 90, 1213–1218.CrossRefGoogle Scholar
  56. Skinner, H. C. W., & Jahren, A. H. (2003). Biomineralization. In H. F. Holland & K. K. Turekian (Eds.), Treatise on geochemistry 8 (pp. 117–184). New York: Elsevier.Google Scholar
  57. Sonjak, S., Udovic, M., Wraber, T., Likar, M., & Regvar, M. (2009). Diversity of halophytes and identification of arbuscular mycorrhizal fungi colonising their roots in an abandoned and sustained part of Secovlje saltern. Soil Biology & Biochemistry, 41, 1847–1856.CrossRefGoogle Scholar
  58. Testiati, E., Parinet, J., Massiani, C., Laffont-Schwob, I., Rabier, J., Pfeifer, H. R., Lenoble, V., Masotti, V., & Prudent, P. (2013). Trace metal and metalloid contamination levels in soils and in two native plant species of a former industrial site: evaluation of the phytostabilization potential. Journal of Hazardous Materials, 248–249, 131–141.CrossRefGoogle Scholar
  59. Thimann, K. V. (1980). Senescence in plants. Boca Raton: CRC Press.Google Scholar
  60. Triboit, F., Laffont-Schwob, I., Demory, F., Soulié-Märsche, I., Rabier, J., Despréaux, M., & Thiéry, A. (2010). Heavy metal lability in porewater of highway detention pond sediments in South-Eastern France in relation to submerged vegetation. Water, Air, & Soil Pollution, 209(1-4), 229–240.CrossRefGoogle Scholar
  61. Türkan, I., & Demiral, T. (2009). Recent developments in understanding salinity tolerance. Environmental and Experimental Botany, 67(1), 2–9.CrossRefGoogle Scholar
  62. Walker, D. J., Lutts, S., Sánchez-García, M., & Correal, E. (2014). Atriplex halimus L.: its biology and uses. Journal of Arid Environments, 100-101, 111–121.CrossRefGoogle Scholar
  63. Whipkey, C. E., Capo, R. C., Chadwick, O. A., & Stewart, B. W. (2000). The importance of sea spray to the cation budget of a coastal Hawaiian soil: a strontium isotope approach. Chemical Geology, 168, 37–48.CrossRefGoogle Scholar
  64. Yoon, J., Cao, X., Zhou, Q., & Ma, L. Q. (2006). Accumulation of Pb, Cu and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment, 368, 456–464.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jacques Rabier
    • 1
  • Isabelle Laffont-Schwob
    • 1
  • Anca Pricop
    • 1
    • 2
  • Ahlem Ellili
    • 1
    • 3
  • Gabriel D’Enjoy-Weinkammerer
    • 1
  • Marie-Dominique Salducci
    • 1
  • Pascale Prudent
    • 2
  • Brahim Lotmani
    • 4
  • Alain Tonetto
    • 5
  • Véronique Masotti
    • 1
  1. 1.Aix Marseille Université, CNRS, IRD, Avignon UniversitéInstitut Méditerranéen de Biodiversité et d’Ecologie marine et continentale (IMBE)Marseille cedex 03France
  2. 2.Aix Marseille Université, CNRS, Laboratoire de Chimie de l’Environnement, FRE 3416Marseille cedex 3France
  3. 3.Unité de Physiologie et Biochimie de la Tolérance au Sel des Plantes, Faculté des Sciences, Département de BiologieUniversité de Tunis El ManarTunisTunisia
  4. 4.Laboratoire Protection des végétaux, Unité culture in vitroUniversité A. Ibn Badis de MostaganemMostaganemAlgeria
  5. 5.Aix Marseille Université, PRATIMMarseille cedex 3France

Personalised recommendations