Compost of Aquatic Weed Myriophyllum spicatum as Low-Cost Biosorbent for Selected Heavy Metal Ions

  • Jelena V. Milojković
  • Mirjana D. Stojanović
  • Marija L. Mihajlović
  • Zorica R. Lopičić
  • Marija S. Petrović
  • Tatjana D. Šoštarić
  • Mirjana Đ. Ristić
Article

Abstract

Aquatic weed Myriophyllum spicatum L. is one of the most invasive water plants known. In many countries, it is usually harvested and landfilled, where aerobic and anaerobic decomposition takes place. In this research, the kinetic, equilibrium, and desorption studies of biosorption of Pb(II), Cu(II), Cd(II), Ni(II), and Zn(II) ions onto compost of M. spicatum were investigated in batch experiments. Biosorbent was characterized by scaning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). SEM analysis showed that ion exchange between divalent cations Ca(II) and selected metals takes place. The results of FTIR exposed that carbonyl, carboxyl, hydroxyl, and phenyl groups are main binding sites for those heavy metal ions. The rate of adsorption of the five heavy metals was fast, which achieved equilibrium in 40 min, and followed the pseudo-second-order model well. Langmuir, Freundlich, and Sips equilibrium adsorption models were studied, and Sips isotherm gave the best fit for experimental data. Desorption by 0.1 M HNO3 did not fully recover the metals sorbed onto the compost, indicating that reusing this material as biosorbent is not possible. Furthermore, the use of spent biosorbent as a soil fertilizer is proposed.

Keywords

Competitive biosorption Waste biomass Isotherm Kinetics Desorption 

References

  1. Aiken, S. G., Newroth, P. R., & Wile, I. (1979). The biology of Canadian weeds 34. Myriophyllum spicatum L. Canadian Journal of Plant Science, 59, 201–215.CrossRefGoogle Scholar
  2. Blanco, A., Sanz, B., Llama, M. J., & Serra, J. L. (1999). Biosorption of heavy metals to immobilised Phormidium laminosum biomass. Journal of Biotechnology, 69, 227–240.CrossRefGoogle Scholar
  3. Chen, G., Zeng, G., Tu, X., Huang, G., & Chen, Y. (2005). A novel biosorbent: characterization of spent mushroom compost and its application for removal of heavy metals. Journal of Environmental Sciences, 17(5), 756–760.Google Scholar
  4. Chojnacka, K., Chojnacki, A., & Górecka, H. (2005). Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue–green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere, 59, 75–84.CrossRefGoogle Scholar
  5. Couch R., & Nelson E., (1985). Myriophyllum spicatum in North America. First international symposium on watermilfoil (Myriophyllum spicatum) and related Haloragaceae species, Vancouver, Canada.Google Scholar
  6. Derkacheva, O., & Sukhov, D. (2008). Investigation of lignins by FTIR spectroscopy. Macromolecular Symposia, 265, 61–68.CrossRefGoogle Scholar
  7. Freundlich, H. (1906). Adsorption in solutions. Zeitschrift für Physikalische Chemie, 57, 385–470.Google Scholar
  8. Grimes, S. M., Taylor, G. H., & Cooper, J. (1999). The availability and binding of heavy metals in compost derived from household waste. Journal of Chemical Technology and Biotechnology, 74, 1125–1130.CrossRefGoogle Scholar
  9. Harikishore, D., Reddy, K., Lee, S. M., & Seshaiah, K. (2012). Biosorption of toxic heavy metal ions from water environment using honeycomb biomass—an industrial waste material. Water, Air, and Soil Pollution, 223, 5967–5982.CrossRefGoogle Scholar
  10. Hermana, J., & Nurhayati, E. (2010). Removal of Cr3+ and Hg2+ using compost derived from municipal solid waste. Sustainable Environment Research, 20(4), 257–261.Google Scholar
  11. Ho, Y. S., & McKay, G. (1999). Pseudo-second order model for sorption processes. Process Biochemistry, 34, 451–465.CrossRefGoogle Scholar
  12. Ho, Y. S., Porter, J. F., & McKay, G. (2002). Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems. Water, Air, and Soil Pollution, 141, 1–33.CrossRefGoogle Scholar
  13. Keskinkan, O., Goksu, M. Z. L., Yuceer, A., Basibuyuk, M., & Forster, C. F. (2003). Heavy metal adsorption characteristics of a submerged aquatic plant (Myriophyllum spicatum). Process Biochemistry, 39, 179–183.CrossRefGoogle Scholar
  14. Keskinkan, O., Goksu, M. Z. L., Yuceer, A., & Basibuyuk, M. (2007). Comparison of the adsorption capabilities of Myriophyllum spicatum and Ceratophyllum demersum for zinc, copper and lead. Engineering in Life Sciences, 7(2), 192–196.CrossRefGoogle Scholar
  15. Lagergren, S. (1898). About the theory of so-called adsorption of solute substances. Kungliga Sevenska Vetenskapasakademiens Handlingar, 24, 1–39.Google Scholar
  16. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society, 1361–1403.Google Scholar
  17. Lesage, E., Mundia, C., Rousseau, D. P. L., Van de Moortel, A. M. K., Du Laing, G., Meers, E., Tack, F. M. G., De Pauw, N., & Verloo, M. G. (2007). Sorption of Co, Cu, Ni and Zn from industrial effluents by the submerged aquatic macrophyte Myriophyllum spicatum L. Ecological Engineering, 30(4), 320–325.CrossRefGoogle Scholar
  18. McBride, M. B. (1994). Environmental Chemistry of Soils. New York: Oxford University Press.Google Scholar
  19. Milojković, J. V., Mihajlović, M. L., Stojanović, M. D., Lopičić, Z. R., Petrović, M. S., Šoštarić, T. D., & Ristić, M. Đ. (2013). Pb(II) removal from aqueous solution by Myriophyllum spicatum and its compost: equilibrium, kinetic and thermodynamic study. Journal of Chemical Technology and Biotechnology, doi: 10.1002/jctb.4184.
  20. Minceva, M., Markovska, L., & Meshko, V. (2007). Removal of Zn2+, Cd2+ and Pb2+ from binary aqueous solution by natural zeolite and granulated activated carbon. Macedonian Journal of Chemistry and Chemical Engineering, 26(2), 125–134.Google Scholar
  21. Munagapati, V. S., Yarramuthi, V., Nadavala, S. K., Alla, S. R., & Abburi, K. (2010). Biosorption of Cu(II), Cd(II) and Pb(II) by Acacia leucocephala bark powder: kinetics, equilibrium and thermodynamics. Chemical Engineering Journal, 157, 357–365.CrossRefGoogle Scholar
  22. Nightingale, E. R. (1959). Phenomenological theory of ion solvation. Effective radii of hydrated ions. Journal of Physical Chemistry, 63, 1381–1387.CrossRefGoogle Scholar
  23. Paradelo, R., & Barral, M. T. (2012). Evaluation of the potential capacity as biosorbents of two MSW composts with different Cu, Pb and Zn concentrations. Bioresource Technology, 104, 810–813.CrossRefGoogle Scholar
  24. Patrón-Prado, M., Acosta-Vargas, B., Serviere-Zaragoza, E., & Méndez-Rodríguez, L. C. (2010). Copper and cadmium biosorption by dried seaweed Sargassum sinicola in saline wastewater. Water, Air, and Soil Pollution, 210, 197–202.CrossRefGoogle Scholar
  25. Qaiser, S., Saleemi, A. R., & Umar, M. (2009). Biosorption of lead from aqueous solution by Ficus religiosa leaves: batch and column study. Journal of Hazardous Materials, 166, 998–1005.CrossRefGoogle Scholar
  26. Rubinson, K. A., & Rubinson, J. F. (2001). Aná lisis Instrumental. Madrid: Prentice-Hall.Google Scholar
  27. Sharma, R. K., Agrawal, M., & Marshall, F. (2007). Heavy metal contamination of soil and vegetables in suburban areas of Varanasi, India. Ecotoxicology and Environmental Safety, 66, 258–266.CrossRefGoogle Scholar
  28. Sips, R. (1948). On the structure of a catalyst surface. Journal of Physical Chemistry, 16, 490–495.CrossRefGoogle Scholar
  29. Socrates, G. (2001). Infrared and Raman characteristic group frequencies: tables and charts. London: John Wiley and Sons ltd.Google Scholar
  30. Wahab, M. A., Jellali, S., & Jedidi, N. (2010). Ammonium biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms modeling. Bioresource Technology, 101, 5070–5075.CrossRefGoogle Scholar
  31. Wang, J., & Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27, 195–226.CrossRefGoogle Scholar
  32. Wang, T. C., Weissman, J. C., Ramesh, G., Varadarajan, R., & Benemann, J. R. (1996). Parameters for removal of toxic heavy metals by water milfoil (Myriophyllum spicatum). Bulletin of Environmental Contamination and Toxicology, 57, 779–786.CrossRefGoogle Scholar
  33. Weber, W. J., & Morris, J. C. (1963). Kinetics of adsorption on carbon from solution. Journal of the Sanitary Engineering Division-American Society of Civil Engineers, 89, 31–60.Google Scholar
  34. Witek-Krowiak, A. (2012). Analysis of temperature-dependent biosorption of Cu2+ ions on sunflower hulls: kinetics, equilibrium and mechanism of the process. Chemical Engineering Journal, 192, 13–20.CrossRefGoogle Scholar
  35. Wulfsberg, G. (1987). Principles of descriptive chemistry. Monterey CA: Brooks/Cole Publishing.Google Scholar
  36. Yan, C., Li, G., Xue, P., Wei, Q., & Li, Q. (2010). Competitive effect of Cu(II) and Zn(II) on the biosorption of lead(II) by Myriophyllum spicatum. Journal of Hazardous Materials, 179, 721–728.CrossRefGoogle Scholar
  37. Zhang, M. (2011). Adsorption study of Pb(II), Cu(II) and Zn(II) from simulated acid mine drainage using dairy manure compost. Chemical Engineering Journal, 172, 361–368.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jelena V. Milojković
    • 1
  • Mirjana D. Stojanović
    • 1
  • Marija L. Mihajlović
    • 1
  • Zorica R. Lopičić
    • 1
  • Marija S. Petrović
    • 1
  • Tatjana D. Šoštarić
    • 1
  • Mirjana Đ. Ristić
    • 2
  1. 1.Institute for Technology of Nuclear and Other Mineral Raw MaterialsBelgradeSerbia
  2. 2.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia

Personalised recommendations