Modeling Carbon Stocks in a Secondary Tropical Dry Forest in the Yucatan Peninsula, Mexico

  • Zhaohua Dai
  • Richard A. Birdsey
  • Kristofer D. Johnson
  • Juan Manuel Dupuy
  • Jose Luis Hernandez-Stefanoni
  • Karen Richardson


The carbon balance of secondary dry tropical forests of Mexico’s Yucatan Peninsula is sensitive to human and natural disturbances and climate change. The spatially explicit process model Forest-DeNitrification-DeComposition (DNDC) was used to estimate forest carbon dynamics in this region, including the effects of disturbance on carbon stocks. Model evaluation using observations from 276 sample plots in a tropical dry forest in the Yucatan Peninsula indicated that Forest-DNDC can be used to simulate carbon stocks for this forest with good model performance efficiency. The simulated spatial variability in carbon stocks was large, ranging from 5 to 115 Mg carbon (C) ha−1, with a mean of 56.6 Mg C ha−1. Carbon stocks in the forest were largely influenced by human disturbances between 1985 and 2010. Based on a comparison of the simulations with and without disturbances, carbon storage in the year 2012 with disturbance was 3.2 Mg C ha−1, lower on average than without disturbance. The difference over the whole study area was 154.7 Gg C, or an 8.5 % decrease. There were substantial differences in carbon stocks simulated at individual sample plots, compared to spatially modeled outputs (200 m2 plots vs. polygon simulation units) at some locations due to differences in vegetation class, stand age, and soil conditions at different resolutions. However, the difference in the regional mean of carbon stocks between plot-level simulation and spatial output was small. Soil CO2 and N2O fluxes varied spatially; both fluxes increased with increasing precipitation, and soil CO2 also increased with an increase in biomass. The modeled spatial variability in CH4 uptake by soils was small, and the flux was not correlated with precipitation. The net ecosystem exchange (NEE) and net primary production (NPP) were nonlinearly correlated with stand age. Similar to the carbon stock simulations, different resolutions resulted in some differences in NEE and NPP, but the spatial means were similar.


Biomass Forest-DNDC Greenhouse gas Disturbance Tropical dry forest 


  1. Amacher, M. C., & Mackowiak, C. L. (2011). Seasonal soil CO2 flux under Big Sagebrush (Artemisia tridentata Nutt.). Natural Resources and Environmental Issues, 17, 1–13.Google Scholar
  2. Bauer-Gottwein, P., Gondwe, B. R. N., Charvet, G., Marin, L. E., Rebolledo-Vieyra, M., & Merediz-Alonso, G. (2011). Review: the Yucatan Peninsula karst aquifer, Mexico. Hydrogeology Journal. doi:10.1007/s10040-010-0699-5.Google Scholar
  3. Bianchini, E., Pimenta, J. A., & dos Santos, F. A. (2001). Spatial and temporal variation in the canopy cover in a tropical semi-deciduous forest. Brazilian Archives of Biology and Technology, 44, 269–276.CrossRefGoogle Scholar
  4. Birdsey, R., Pregitzer, K., & Lucier, A. (2006). Forest carbon management in the United States: 1600–2100. JEQ, 35, 1461–1469.CrossRefGoogle Scholar
  5. Birdsey, R. A., Jenkins, J. C., Johnson, M., Huber-Sannwald, E., Amiro, B., de Jong, B., Barra, J. D. E., French, N., Garcia-Oliva, F., Harmon, M. E., Heath, L. S., Jaramillo, V. J., Johnsen, K., Law, B. E., Marin-Spiotta, E., Masera, O., Neilson, R., Pan, Y., & Pregitzer, K. S. (2007). North American forests. In A. W. King, L. Dilling, G. P. Zimmerman, D. M. Fairman, R. A. Houghton, G. Marland, A. Z. Rose, & T. J. Wilbanks (Eds.), The first state of the carbon cycle report (SOCCR): the North American carbon budget and implications for the global carbon cycle, a report by the US Climate Change Science Program and the Subcommittee on Global Change Research (pp. 117–126). Asheville: National Oceanic and Atmospheric Administration, National Climate Data Center.Google Scholar
  6. Barnard, R., Le Roux, X., Hungate, B. A., Cleland, E. E., Blankinship, J. C., Barthes, L., & Leadley, P. W. (2006). Several components of global change alter nitrifying and denitrifying activities in an annual grassland. Functional Ecology, 20, 557–564.CrossRefGoogle Scholar
  7. Borchert, R., Rivera, G., & Hagnauer, W. (2002). Modification of vegetation phenology in a tropical semi-deciduous forest by abnormal drought and rain. Biotropica, 34, 27–39.CrossRefGoogle Scholar
  8. Breuer, L., Kiese, R., & Butterbach-Bahl, K. (2002). Temperature and moisture effects on nitrification rates in tropical rain-forest soils. Soil Science Society of America Journal, 66, 834–844.CrossRefGoogle Scholar
  9. Brown, S., & Lugo, A. E. (1982). The storage and production of organic matter in tropical forests and their role in the global carbon cycle. Biotropica, 14, 161–187.CrossRefGoogle Scholar
  10. Brown, S., & Lugo, A. E. (1990). Tropical secondary forests. J Tropical Ecology, 6, 1–13.CrossRefGoogle Scholar
  11. Cairns, M. A., Olmsted, I., Granados, J., & Argaez, J. (2003). Composition and aboveground tree biomass of a dry semi-evergreen forest on Mexico’s Yucatan Peninsula. Forest Ecology and Management, 186, 125–132.CrossRefGoogle Scholar
  12. Charman, D. J., Beilman, D. W., Blaauw, M., Booth, R. K., Brewer, S., Chambers, F. M., Christen, J. A., Gallego-Sala, A., Harrison, S. P., Hughes, P. D. M., Jackson, S. T., Korhola, A. K., Mauquoy, D., Mitchell, F. J. G., Prentice, I. C., van der Linden, M., De Vleeschouwer, F., Yu, Z. C., Alm, J., Bauer, I. E., Corish, Y. M. C., Garneau, M., Hohl, V., Huang, Y., Karofeld, E., Le Roux, G., Loisel, J., Moschen, R., Nichols, J. E., Nieminen, T. M., MacDonald, G. M., Phadtare, N. R., Rausch, N., Dillasoo, U., Swingdles, G. T., Tuittila, E.-S., Ukommaanaho, L., Valiranta, M., van Bellen, S., van Geel, B., Vitt, D. H., & Zhao, Y. (2013). Climate-related changes in peatland carbon accumulation during the millennium. Biogeosciences, 10, 929–944. doi:10.5194/bg-10929-2013.CrossRefGoogle Scholar
  13. Chen, J. M., Ju, W., Cihlar, J., Price, D., Liu, J., Chen, W., Pan, J., Balck, A., & Barr, A. (2003). Spatial distribution of carbon sources and sinks in Canada’s forests. Tellus, 55B, 622–641.Google Scholar
  14. Comision Nacional Del Agua (CONAGUA). (2012). Climatic means by station. Accessed November.
  15. Crill, P. M. (1991). Seasonal patterns of methane uptake and carbon dioxide release by a temperate woodland soil. Global Biogeochemical Cycles, 5, 319–334.CrossRefGoogle Scholar
  16. Dai, Z., Amatya, D. M., Sun, G., Trettin, C. C., Li, C., & Li, H. (2011). Climate variability and its impact on forest hydrology on South Carolina coastal plain, USA. Atmosphere, 2, 330–357. doi:10.3390/atmos2030330.CrossRefGoogle Scholar
  17. Dai, Z., Trettin, C. C., Li, C., Li, H., Sun, G., & Amatya, D. M. (2012). Effect of assessment scale on spatial and temporal variations in CH4, CO2 and N2O fluxes in a forested watershed. Water, Air, and Soil Pollution, 223, 253–265. doi:10.1007/s11270-011-0855-0.CrossRefGoogle Scholar
  18. Dai, Z., Trettin, C. C., Li, C., Sun, G., Amatya, D. M., & Li, H. (2013). Modeling the impacts of climate variability and hurricane on carbon sequestration in a coastal forested wetland in South Carolina. Natural Science, 5, 375–388. doi:10.4236/ns.2013.53051.CrossRefGoogle Scholar
  19. Daubenmire, R. (1972). Phenology and other characteristics of tropical semi-deciduous forest in North-Western Costa Rica. Journal of Ecology, 60, 147–170.CrossRefGoogle Scholar
  20. Dupuy, J. M., Hernandez-Stefanoni, J. L., Hernandez-Juarez, R. A., Tetetia-Rangel, E., Lopez-Martinez, J. O., Leyequien-Abaca, E., Tun-Dzul, F. J., & May-Pat, F. (2012). Patterns and correlates of tropical dry forest structure and composition in highly replicated chronosequence in Yucatan, Mexico. Biotropica, 44, 151–162.CrossRefGoogle Scholar
  21. Eaton, J. M., & Lawrence, D. (2008). Loss of carbon sequestration potential after several decades of shifting cultivation in the Southern Yucatan. Forest Ecology and Management. doi:10.1016/j.foreco.2008.10.019.Google Scholar
  22. Goward, S. N., Masek, J. G., Cohen, W., Moisen, G., Collatz, G. J., Healey, S., Houghton, R., Huang, C., Kennedy, R., Law, B., Powell, S., Turner, D., & Wulder, M. A. (2008). Forest disturbance and North American carbon flux. Eos Transactions, 89, 105–116.CrossRefGoogle Scholar
  23. Guckland, A., Flessa, H., & Prenzel, J. (2009). Controls of temporal and spatial variability of methane uptake in soils of a temperate forest with different abundance of European beech (Fagus sylvatica L.). Soil Biology & Biochemistry, 41, 1659–1667. doi:10.1016/j.soilbio.2009.05.006.CrossRefGoogle Scholar
  24. Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D. W., & Medina-Elizade, M. (2006). Global temperature change. Proceedings of the National Academy of Science, 103, 14288–14293.CrossRefGoogle Scholar
  25. Haug, G. H., Gunther, D., Peterson, L. C., Sigman, D. M., Hughen, K. A., & Aeschlimann, B. (2003). Climate and the collapse of Maya civilization. Science, 299, 1731–1735.CrossRefGoogle Scholar
  26. He, L., Chen, J. M., Pan, Y., Birdsey, R., & Kattge, J. (2012). Relationship between net primay productivity and forest stand age in U.S. forests. Global Biogeochemical Cycles, 26, GB3009. doi:10.1029/2010GB003942.
  27. Hernandez-Stefanoni, J. L., Dupuy, J. M., Tun-Dzul, F., & May-Pat, F. (2011). Influence of landscape structure and stand age on species density and biomass of a tropical dry forest across spatial scales. Landscape Ecology, 26, 355–370. doi:10.1007/s10980-010-9561-3.CrossRefGoogle Scholar
  28. Hodell, D. A., Curtis, J. H., & Brenner, M. (1995). Possible role of climate in the collapse of classic Maya civilization. Nature, 375, 391–394.CrossRefGoogle Scholar
  29. Holdridge, L. R. (1967). Life zone ecology. San Jose: Tropical Science Center. 206pp.Google Scholar
  30. Hughes, R. F., Kauffman, J. B., & Jaramillo, V. J. (1999). Biomass, carbon, and nutrient dynamics of secondary forests in a humid tropical region of Mexico. Ecology, 80, 1892–1907.Google Scholar
  31. IPCC. (2003). Chapter 3. In J. Penman, M. Gytarsky, T. Hiraishi, T. Krug, D. Kruger, R. Pipatti, L. Buendia, K. Miwa, T. Ngara, K. Tanabe, & F. Wagner (Eds.), Good practice guidance for land use, land-use change and forestry (pp. 3.1–3.150). Kanagawa: IPCC.Google Scholar
  32. IPCC. (2007). Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., and Miller, H.L. (Eds). Paris, France, February 2007.Google Scholar
  33. Ishizuka, S., Sakata, T., Sawata, S., Ikeda, S., Sakai, H., Takenaka, C., Tamai, N., Onodera, S., Shimizu, T., Kan-na, K., Tanaka, N., & Takahashi, M. (2009). Methane uptake rates in Japanese forest soils depend on the oxidation ability of topsoil, with a new estimate for global methane uptake in temperate forest. Biogeochemistry, 92, 281–295. doi:10.1007/s10533-009-9293-0.CrossRefGoogle Scholar
  34. Jassim, F. A., & Altaany, F. H. (2013). Image interpolation using kriging technique for spatial data. Canadian Journal of Image Proceeding and Computer Vision, 4, 16–21.Google Scholar
  35. Kato, T., Knorr, W., Schoize, M., Veenendaal, E., Kaminski, T., Kattge, J., & Gobron, N. (2013). Simultaneous assimilation of satellite and eddy covariance data for improving terrestrial water and carbon simulations at a semi-arid woodland site in Botswana. Biogeosciences, 10, 789–802. doi:10.5194/bg-10-789-2013.CrossRefGoogle Scholar
  36. Kennard, D. K., Gould, K., Putz, F. E., Fredericksen, T. S., & Morales, F. (2002). Effect of disturbance intensity on regeneration mechanisms in a tropical dry forest. Forest Ecology and Management, 162, 197–208.CrossRefGoogle Scholar
  37. Kesik, M., Bruggemann, N., Forkel, R., Kiese, R., Knoche, R., Li, C., Seufert, G., Simpson, D., & Butterbach-Bahl, K. (2006). Future scenarios of N2O and NO emissions from European forest soils. Journal of Geophysical Research, 111, G02018. doi:10.1029/2005JG000115.
  38. Kiese, R., Li, C., Hilbert, D. W., Papen, H., & Butterbach-Bahl, K. (2005). Regional application of PnET-DNDC for estimating the N2O source strength of tropical rainforests in the Wet Tropics of Australia. Global Change Biology, 11, 128–144.CrossRefGoogle Scholar
  39. Klemedtsson, A. K., & Klemedtsson, L. (1997). Methane uptake in Swedish forest soil in relation to liming and extra N-deposition. Biology and Fertility of Soils, 25, 296–301.CrossRefGoogle Scholar
  40. Kurbatova, J., Li, C., Varlagin, A., Xiao, X., & Vygodskaya, N. (2008). Modeling carbon dynamics in two adjacent spruce forests with different soil conditions in Russia. Biogeosciences, 5, 969–980.CrossRefGoogle Scholar
  41. Li, C., Frolking, S., & Frolking, T. A. (1992). A model of Nitrous oxide evolution from soil driven by rainfall events: 2. Model applications. JGR, 97, 9777–9783.CrossRefGoogle Scholar
  42. Li, C., Aber, J., Stang, F., Butter-Bahl, K., & Papen, H. (2000). A process-oriented model of N2O and NO emissions from forest soils. 1. Model development. Journal of Geophysical Research Atmospheres, 105, 4369–4384.CrossRefGoogle Scholar
  43. Li, C., Cui, J., Sun, G., & Trettin, C. C. (2004). Modeling impacts of management on carbon sequestration and trace gas emissions in forested wetland ecosystems. Environmental Management (Supplement), 33, S176–S186.Google Scholar
  44. Li, J. & Heap, A.D. (2008). A review of spatial interpolation methods for environmental scientists. Geoscience Australia, Record 2008/23, pp137, ISSN 1448–2177, Canberra, Australia.Google Scholar
  45. Lu, X., Yan, Y., Fan, J., & Wang, X. (2012). Gross nitrification and denitrification in alpine grassland ecosystems on the Tibetan Plateau. Actic, Antarctic, and Alpine Research, 44, 188–196.CrossRefGoogle Scholar
  46. Miehle, P., Livesley, S. J., Feikema, P. M., Li, C., & Arndt, S. K. (2006). Assessing productivity and carbon sequestration capacity of Eucalyptus globules plantation using the process model Forest-DNDC: calibration and validation. Ecological Modeling, 192, 83–94.CrossRefGoogle Scholar
  47. Moriasi, D., Arnold, J., Liew, M. W. V., Bingner, R., Harmel, R., & Veith, T. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. ASABE, 50, 885–899.CrossRefGoogle Scholar
  48. Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models-part I: a discussion of principles. Journal of Hydrology, 10, 282–290.CrossRefGoogle Scholar
  49. Pacific, V. J., McGlynn, B. L., Riveros-Iregui, D. A., Epstein, H. E., & Welsch, D. L. (2009). Differential soil respiration response to changing hydrologic regimes. Water Resources Research, 45, W07201. doi:10.1029/2009WR007721.CrossRefGoogle Scholar
  50. Pan, Y., Birdsey, R. A., Fang, J., Hounghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Ganadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, D., Piao, S., Rautiainen, A., Sitch, S., & Hayes, D. (2011). A large and persistent carbon sink in the world’s forests. Science, 333, 988–993. doi:10.1126/science.1201609.CrossRefGoogle Scholar
  51. Pietsch, S. A., Hasenauer, H., Kucera, J., & Cermak, J. (2003). Modeling effects of hydrological changes on the carbon and nitrogen balance of oak in floodplains. Tree Physics, 23, 735–746.CrossRefGoogle Scholar
  52. Raich, J. W., & Schlesinger, W. H. (1992). The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 44B, 81–99.CrossRefGoogle Scholar
  53. Read, L., & Lawrence, D. (2003). Recovery of biomass following cultivation in dry tropical forests of the Yucatan. Ecological Application, 13, 85–97.CrossRefGoogle Scholar
  54. Renaud, L. (2008). Methane emissions from bottomland hardwood wetlands in Francis Marion National Forest, SC (p. 112). Charleston: College of Charleston.Google Scholar
  55. Rico‐Gray, V., & Garcia‐Franco, J. G. (1991). The Maya and the vegetation of the Yucatan peninsula. Journal of Ethnobiology, 11, 135–142.Google Scholar
  56. Riveros-Iregui, D. A., & McGlynn, B. L. (2009). Landscape structure control on soil CO2 efflux variability in complex terrain: scaling from point observation to watershed scale fluxes. Journal of Geophysical Research, 114, G02010. doi:10.1029/2008JG000885.CrossRefGoogle Scholar
  57. Ryan, M.G. (2008). Forests and carbon storage (June 4, 2008), U.S. Department of Agriculture, Forest Service, Feb. 8, 2013.
  58. Schroth, G. (1995). Tree root characteristics as criteria for species selection and systems design in agroforestry. Agroforestry Systems, 30, 125–143. doi:10.1007/BF00708917.CrossRefGoogle Scholar
  59. Stange, F., Butterbachl, K., Papen, H., Zechmeister-Boltenstern, S., Li, C., & Aber, J. (2000). A process-oriented model of N2O and NO emissions from forest soils. Journal of Geophysical Research, 105, 4385–4398.CrossRefGoogle Scholar
  60. Steudler, P. A., Bowden, R. D., Melillo, J. M., & Aber, J. D. (1989). Influence of nitrogen fertilization on methane uptake in temperate forest soils. Nature, 341, 314–316.CrossRefGoogle Scholar
  61. Trettin, C. C., Laiho, R., Minkkinen, K., & Laine, J. (2006). Influence of climate change factors on carbon dynamics in northern forested peatlands. Canadian Journal of Soil Science, 86, 269–280.CrossRefGoogle Scholar
  62. Turner, B. L., II, Cortina‐Villar, S., Forester, D., Geoghegan, J., Keys, E., Klepeis, P., Lawrence, D., Macario Mendoza, P., Manson, S., Ogneva‐Himmelberger, Y., Plotkin, A. B., Perez‐Salicrup, D., Roy-Chowdhury, R., Savitsky, B., Schneider, L., Schmook, B., & Vance, C. (2001). Deforestation in the southern Yucatan peninsula region: an integrative approach. Forest Ecology and Management, 154, 353–370.CrossRefGoogle Scholar
  63. Zhang, Y., Li, C., Trettin, C. C., Li, H., & Sun, G. (2002). An integrated model of soil, hydrology and vegetation for carbon dynamics in wetland ecosystems. Global Biogeochemical Cycles, 16, GB001838. doi:10.1029/2001.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Zhaohua Dai
    • 1
    • 2
  • Richard A. Birdsey
    • 1
  • Kristofer D. Johnson
    • 1
  • Juan Manuel Dupuy
    • 3
  • Jose Luis Hernandez-Stefanoni
    • 3
  • Karen Richardson
    • 2
  1. 1.USDA Forest ServiceNewtown SquareUSA
  2. 2.Commission for Environmental Cooperation of North AmericaMontrealCanada
  3. 3.Centro de Investigación Científica de Yucatán A.CUnidad de Recursos NaturalesMéridaMexico

Personalised recommendations