Advertisement

Effect of Enhancers and Inhibitors on Photocatalytic Sunlight Treatment of Methylene Blue

  • Wennie Subramonian
  • Ta Yeong Wu
Article

Abstract

In view of the fatal illnesses caused by methylene blue (MB) which is contained in the dye wastewater, the present study focused on the use of natural sunlight in heterogeneous photocatalysis to decolorize and degrade MB. The present study also investigated the effects of enhancers (hydrogen peroxide and persulfate ion) and inhibitors (chloride and carbonate ions) on photodecolorization of MB. Pseudo-first-order rate constants for each studied effect were determined through Langmuir-Hinshelwood model. The recommended conditions to photodecolorize 60 ppm of MB under natural sunlight were 1.0 g/L of titanium dioxide nanopowder at initial pH 10.5 in order to achieve 85.3 % decolorization (rate constant of 10.8 × 10−3 min−1). The addition of 4,080 ppm of hydrogen peroxide and persulfate ion significantly enhanced the decolorization efficiency up to 96.6 and 99.3 %, respectively (rate constants of 66.2 and 91.0 × 10−3 min−1, respectively). However, the addition of 2,000 ppm of chloride and carbonate ions reduced the decolorization efficiency of MB to 74.7 and 70.2 %, respectively (rate constants of 7.8 and 7.3 × 10−3 min−1, respectively). The present study implied that it was possible to use natural sunlight as a light source for photocatalytic treatment of dye in tropical countries like Malaysia.

Keywords

Carbonate ion Chloride ion Dye wastewater Hydrogen peroxide Persulfate ion Photocatalysis 

Notes

Acknowledgments

The authors would like to thank Monash University Malaysia for providing W. Subramonian with a PhD scholarship.

References

  1. Advanced Dyestuff and Chemicals Pvt. Ltd. (2011). Product list for textile applications. http://www.textiledyes.net/textile-dyes.html. Accessed 1 May 2011.
  2. Akbal, F. (2005). Photocatalytic degradation of organic dyes in the presence of titanium oxide under UV and solar light: effect of operational parameters. Environmental Progress, 24, 317–322.CrossRefGoogle Scholar
  3. Álvarez, M. S., Moscoso, F., Rodríguez, A., Sanromán, M. A., & Deive, F. J. (2013). Novel physico-biological treatment for the remediation of textile dyes-containing industrial effluents. Bioresource Technology, 146, 689–695.CrossRefGoogle Scholar
  4. Anandan, S. (2008). Photocatalytic effects of titania supported nanoporous MCM-41 on degradation of methyl orange in the presence of electron acceptors. Dyes and Pigments, 76, 535–541.CrossRefGoogle Scholar
  5. Appels, L., Baeyens, J., Degrève, J., & Dewil, R. (2008). Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 34, 755–781.CrossRefGoogle Scholar
  6. Boroski, M., Rodrigues, A. C., Garcia, J. C., Gerola, A. P., Nozaki, J., & Hioka, N. (2008). The effect of operational parameters on electrocoagiulation-flotation process followed by photocatalysts applied to the decontamination of water effluents from cellulose and paper factories. Journal of Hazardous Materials, 160, 135–141.CrossRefGoogle Scholar
  7. Cervantes, F. J., & Santos, A. B. D. (2011). Reduction of azo dyes by anaerobic bacteria: microbiological and biochemical aspects. Reviews in Environmental Science and Bio-Technology, 10, 125–137.CrossRefGoogle Scholar
  8. Chan, S. H. S., Wu, T. Y., Juan, J. C., & Teh, C. Y. (2011). Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye wastewater. Journal of Chemical Technology and Biotechnology, 86, 1130–1158.CrossRefGoogle Scholar
  9. Chen, F., Zhao, J., & Hidaka, H. (2003). Adsorption factor of dye constituent aromatics on the surface of TiO2 in the presence of phosphate ions. Research on Chemical Intermediates, 29, 733–748.CrossRefGoogle Scholar
  10. Chen, X., Wang, W., Xiao, H., Hong, C., Zhu, F., Yao, Y., et al. (2012). Accelerated TiO2 photocatalytic degradation of Acid Orange 7 under visible light mediated by peroxymonosulphate. Chemical Engineering Journal, 193–194, 290–295.CrossRefGoogle Scholar
  11. Chiu, W. S., Khiew, P. S., Cloke, M., Isa, D., Tan, T. K., Radiman, S., et al. (2010). Photocatalytic study of two-dimensional ZnO nanopellets in the decomposition of methylene blue. Chemical Engineering Journal, 158, 345–352.CrossRefGoogle Scholar
  12. Chowdhury, P., & Viraraghavan, T. (2009). Sonochemical degradation of chlorinated organic compounds, phenolic compounds and organic dyes—a review. Science of the Total Environment, 407, 2474–2492.CrossRefGoogle Scholar
  13. Das, D. P., Baliarsingh, N., & Parida, K. M. (2007). Photocatalytic decolorisation of methylene blue (MB) over titania pillared zirconium phosphate (ZrP) and titanium phosphate (TiP) under solar radiation. Journal of Molecular Catalysis A: Chemical, 261, 241–261.Google Scholar
  14. Divya, N., Bansal, A., & Jana, A. K. (2013). Photocatalytic degradation of azo dye Orange II in aqueous solutions using copper-impregnated titania. International Journal of Environmental Science and Technology, 10, 1265–1274.CrossRefGoogle Scholar
  15. Forgacs, E., Cserháti, T., & Oros, G. (2004). Removal of synthetic dyes from wastewaters: a review. Environmental International, 30, 953–971.CrossRefGoogle Scholar
  16. Franco, A., Neves, M. C., Carrott, M. M. L., Mendonca, M. H., Pereira, M. I., & Monteiro, O. C. (2009). Photocatalytic decolorization of methylene blue in the presence of TiO2/ZnS nanocomposites. Journal of Hazardous Materials, 161, 545–550.CrossRefGoogle Scholar
  17. Fu, Z., Zhang, Y., & Wang, X. (2011). Textile wastewater treatment using anoxic filter bed and biological wriggle bed-ozone biological aerated filter. Bioresource Technology, 102, 3748–3753.CrossRefGoogle Scholar
  18. Gaca, J., Kowalska, M., & Mróz, M. (2005). The effect of chloride ions on alkylbenzenesulfonate degradation in the Fenton reagent. Polish Journal of Environmental Studies, 14, 23–27.Google Scholar
  19. Ghaly, M. Y., Farah, J. Y., & Fathy, A. M. (2007). Enhancement of decolorization rate and COD removal from dyes containing wastewater by the addition of hydrogen peroxide under solar photocatalytic oxidation. Desalination, 217, 74–84.CrossRefGoogle Scholar
  20. Ghaly, M. Y., Jamil, T. S., El-Seesy, I. E., Souaya, E. R., & Nasr, R. A. (2011). Treatment of highly polluted paper mill wastewater by solar photocatalytic oxidation with synthesized nano TiO2. Chemical Engineering Journal, 168, 446–454.CrossRefGoogle Scholar
  21. Güçlü, D., Şirin, N., Şahinkaya, S., & Sevimli, M. F. (2013). Advanced treatment of coking wastewater by conventional and modified Fenton processes. Environmental Progress and Sustainable Energy, 32, 176–180.CrossRefGoogle Scholar
  22. Gümüş, D., & Akbal, F. (2011). Photocatalytic degradation of textile dye and wastewater. Water, Air, & Soil Pollution, 216, 117–124.CrossRefGoogle Scholar
  23. Hashim, H. A. A., Mohamed, A. R., & Lee, K. T. (2001). Solar photocatalytic degradation of tartrazine using titanium oxide. Jurnal Teknologi, 35, 31–40.CrossRefGoogle Scholar
  24. Herney-Ramirez, J., Vicente, M. A., & Madeira, L. M. (2010). Heterogeneous photo-Fenton oxidation with pillard clay-based catalysts for wastewater treatment: a review. Applied Catalysis, B: Environmental, 98, 10–26.CrossRefGoogle Scholar
  25. Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C., & Hermann, J. M. (2001). Photocatalytic degradation pathway of methylene blue in water. Applied Catalysis, B: Environmental, 31, 145–157.CrossRefGoogle Scholar
  26. Kansal, S. K., Singh, M., & Sud, D. (2007). Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts. Journal of Hazardous Materials, 141, 581–590.CrossRefGoogle Scholar
  27. Kavitha, S. K., & Palanisamy, P. N. (2010). Solar photocatalytic degradation of Vat Yellow 4 dye in aqueous suspension of TiO2—optimization of operational parameters. International Journal of Bioflux Society, 2, 189–202.Google Scholar
  28. Kitture, R., Koppikar, S. J., Kaul-Ghanekar, R., & Kale, S. N. (2010). Catalyst efficiency, photostability and reusability study of ZnO nanoparticles in visible light for dye degradation. Journal of Physics and Chemistry of Solids, 72, 60–66.CrossRefGoogle Scholar
  29. Kumar, J., & Bansal, A. (2012). Photodegradation of amaranth in aqueous solution catalyzed by immobilized nanoparticles of titanium dioxide. International Journal of Environmental Science and Technology, 9, 479–484.CrossRefGoogle Scholar
  30. Kumar, J., & Bansal, A. (2013). A comparative study of immobilization techniques for photocatalytic degradation of rhodamine B using nanoparticles of titanium dioxide. Water, Air, & Soil Pollution, 224, 1–11.Google Scholar
  31. Lachheb, H., Puzenat, E., Houas, A., Elalaoui, E., Guilard, C., Hermann, J. M., et al. (2002). Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Applied Catalysis, B: Environmental, 39, 75–90.CrossRefGoogle Scholar
  32. Lee, B. N., Liaw, W. D., & Lou, J. C. (1999). Photocatalytic decolorization of methylene blue in aqueous TiO2 suspension. Environmental Engineering Science, 16, 165–175.CrossRefGoogle Scholar
  33. Li, F. B., & Li, X. Z. (2002). The enhancement of photodegradation efficiency using Pt-TiO2 catalyst. Chemosphere, 48, 1103–1111.CrossRefGoogle Scholar
  34. Lin, X., Huang, F., Wang, W., & Shi, J. (2007). Photocatalytic activity of Bi24Ga2O39 for degrading methylene blue. Scripta Materialia, 56, 189–192.CrossRefGoogle Scholar
  35. Lodha, S., Jain, A., & Punjabi, P. B. (2010). A comparative study of photocatalytic degradation of methylene blue in presence of some transition metal complexes and hydrogen peroxide. Malaysian Journal of Chemistry, 120, 19–26.Google Scholar
  36. Lotito, A. M., Fratino, U., Bergna, G., & Iaconi, C. D. (2012). Integrated biological and ozone treatment of printing textile wastewater. Chemical Engineering Journal, 195–196, 261–269.CrossRefGoogle Scholar
  37. Low, F. C. F., Wu, T. Y., Teh, C. Y., Juan, J. C., & Balasubramaniam, N. (2012). Investigation into photocatalytic decolorisation of CI Reactive Black 5 using titanium dioxide nanopowder. Coloration Technology, 128, 44–50.CrossRefGoogle Scholar
  38. Mohapatra, P., & Parida, K. M. (2006). Photocatalytic activity of sulfate modified titania 3: decolorization of methylene blue in aqueous solution. Journal of Molecular Catalysis A: Chemical, 258, 118–123.CrossRefGoogle Scholar
  39. Mota, A. L. N., Albuquerque, L. F., Beltrame, L. T. C., Chiavone-Filho, O., Machulek, A., Jr., & Nascimento, C. A. O. (2008). Advanced oxidation process and their application in the petroleum industry: a review. Brazilian Journal of Petroleum and Gas, 2, 122–142.Google Scholar
  40. Muruganandham, M., Sobana, N., & Swaminathan, M. (2007). Solar assisted photocatalytic and photochemical degradation of Reactive Black 5. Journal of Hazardous Materials B, 137, 1371–1376.CrossRefGoogle Scholar
  41. Natarajan, T. S., Natarajan, K., Bajaj, H. C., & Tayade, R. J. (2013). Study on identification of leather industry wastewater constituents and its photocatalytic treatment. International Journal of Environmental Science and Technology, 10, 855–864.CrossRefGoogle Scholar
  42. National Toxicology Program (2013). Executive summary of safety and toxicity information: methylene blue. http://ntp.niehs.nih.gov/?objectid=03DB4384-0364-AB0B-5C71EF4A37D6888A#NOM. Accessed 16 October 2013.
  43. Neppolian, B., Choi, H. C., Sakthivel, S., Arabindoo, B., & Murugesan, V. (2002). Solar light induced and TiO2 assisted degradation of textile dye Reactive Blue 4. Chemosphere, 46, 1173–1181.CrossRefGoogle Scholar
  44. Nouri, J., Nouri, N., & Moeeni, M. (2012). Development of industrial waste disposal scenarios using life-cycle assessment approach. International Journal of Environmental Science and Technology, 9, 417–424.CrossRefGoogle Scholar
  45. Ong, S.-A., Min, O.-M., Ho, L.-N., & Wong, Y.-S. (2012). Comparative study on photocatalytic degradation of mono azo dye acid orange 7 and methyl orange under solar light irradiation. Water, Air, & Soil Pollution, 223, 5483–5493.CrossRefGoogle Scholar
  46. Pardeshi, S. K., & Patil, A. B. (2009). Solar photocatalytic degradation of resorcinol a model endocrine disrupter in water using zinc oxide. Journal of Hazardous Materials, 163, 403–409.CrossRefGoogle Scholar
  47. Poulios, I., & Aetopoulou, I. (1999). Photocatalytic degradation of the textile dye Reactive Orange 16 in the presence of TiO2 suspensions. Environmental Technology, 20, 479–487.CrossRefGoogle Scholar
  48. Pouretedal, H. R., & Kadkhodaie, A. (2010). Synthetic CeO2 nanoparticle catalysis of methylene blue photodegradation: kinetics and mechanism. Chinese Journal of Catalysis, 31, 1328–1334.CrossRefGoogle Scholar
  49. Saheed, H. (2012). Prospects for the textile and clothing industry in Malaysia. Textile Outlook International, 158, 64–101.Google Scholar
  50. Saif Ur Rehman, M., & Han, J. I. (2013). Biosorption of methylene blue from aqueous solutions by Typha angustata phytomass. International Journal of Environmental Science and Technology, 10, 865–870.CrossRefGoogle Scholar
  51. Senthilkumaar, S., Porkodi, K., Gomathi, R., Maheswari, A. G., & Manomani, N. (2006). Sol gel derived silver doped nanocrystalline titania catalysed photodegradation of methylene blue from aqueous solution. Dyes and Pigments, 69, 22–30.CrossRefGoogle Scholar
  52. Sievers, M. (2011). Advanced oxidation processes. Treatise on Water Science, 4, 377–408.CrossRefGoogle Scholar
  53. Song, Y., & Bai, B. (2010). TiO2-assisted photodegradation of Direct Blue 78 in aqueous solution in sunlight. Water, Air, & Soil Pollution, 213, 311–317.CrossRefGoogle Scholar
  54. Su, T.-L., Kuo, Y.-L., Wu, T.-J., & Kung, F.-C. (2012). Experimental analysis and optimization of the synthesizing property of nitrogen-modified TiO2 visible-light photocatalysts. Journal of Chemical Technology and Biotechnology, 87, 160–164.CrossRefGoogle Scholar
  55. Sun, D., Zhang, X., Wu, Y., & Liu, T. (2013). Kinetic mechanism of competitive adsorption of disperse dye and anionic dye on fly ash. International Journal of Environmental Science and Technology, 10, 799–808.CrossRefGoogle Scholar
  56. Vujevic, D., Papic, S., Koprivanac, N., & Bozic, A. (2010). A decolorization and mineralization of reactive dye by UV/Fenton process. Separation Science and Technology, 45, 637–1643.CrossRefGoogle Scholar
  57. Wang, K. H., Hsieh, Y. H., Wu, C. H., & Cheng, C. Y. (2000). The pH and anion effects on the heterogeneous photocatalytic degradation of o-methylebenzoic acid in TiO2 aqueous suspension. Chemosphere, 40, 389–394.CrossRefGoogle Scholar
  58. Wang, S., Li, D., Sun, C., Yang, S., Guan, Y., & He, H. (2014). Highly efficient photocatalytic treatment of dye wastewater via visible-light-driven AgBr-Ag3PO4/MWCNTs. Journal of Molecular Catalysis A: Chemical, 383–384, 128–136.CrossRefGoogle Scholar
  59. Wu, C. H., & Chern, J. M. (2006). Kinetics of photocatalytic decomposition of methylene blue. Industrial and Engineering Chemistry Research, 45, 6450–6457.CrossRefGoogle Scholar
  60. Wu, T. Y., Guo, N., Teh, C. Y., & Hay, J. X. W. (2013a). Advances in ultrasound technology for environmental remediation. Netherlands: Springer. doi: 10.1007/978-94-007-5533-8.CrossRefGoogle Scholar
  61. Wu, T. Y., Mohammad, A. W., Lim, S. L., Lim, P. N., & Hay, J. X. W. (2013b). Recent advances in the reuse of wastewaters for promoting sustainable development. In S. K. Sharma & R. Sanghi (Eds.), Wastewater reuse and management (pp. 47–103). Netherlands: Springer. doi: 10.1007/978-94-007-4942-9_3.CrossRefGoogle Scholar
  62. Xiao, Q., Zhang, J., Xiao, C., Si, Z., & Tan, X. (2008). Solar photocatalytic degradation of Methylene Blue in carbon-doped TiO2 nanoparticles suspension. Solar Energy, 82, 706–713.CrossRefGoogle Scholar
  63. Yang, Y., Wu, Q., Guo, Y., Hu, C., & Wang, E. (2005). Efficient degradation of dye pollutants on nanoporous polyoxotungstate-anatase composite under visible-light irradiation. Journal of Molecular Catalysis A: Chemical, 225, 203–212.CrossRefGoogle Scholar
  64. Zhou, B., Zhao, X., Liu, H., Qu, J., & Huang, C. P. (2010). Visible-light sensitive cobalt-doped BiVO4 (Co-BiVO4) photocatalytic composites for the degradation of methylene blue dye in dilute aqueous solutions. Applied Catalysis B-Environmental, 99, 214–221.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Chemical Engineering Discipline, School of EngineeringMonash UniversityBandar SunwayMalaysia

Personalised recommendations