Advertisement

Changes in Waste Water Disposal for Central European River Catchments and Its Nutrient Impacts on Surface Waters for the Period 1878–1939

  • M. GadegastEmail author
  • U. Hirt
  • M. Venohr
Article

Abstract

Industrialization and urbanization in central Europe since the middle of the nineteenth century led to changes in urban waste water disposal and thus, to an increasing nutrient impact of surface waters by human waste. Based on historical statistics and literature research, we have made a quantification of nutrient loads discharged to surface waters in central European river catchments for seven decades between 1878 and 1939. For both total nitrogen (TN) and total phosphorus (TP), nutrient inputs via point (urban) and diffuse (rural) pathways, nutrient removal by waste water treatment plants (WWTPs) and that during soil passage were quantified. The total nutrient inputs caused by human waste between 1880 and 1940 increased from 243 to 396 kt TN year−1, and from 18 to 30 kt TP year−1. In 1880, most of the inputs (92 % for TN and 93 % for TP) originated from diffuse pathways (cesspits). In 1940, 43 % of TN and 41 % of TP inputs originated from urban pathways (sewer systems). The total nutrient removal between 1880 and 1940 declined from 79 to 59 % for TN and from 86 to 66 % for TP. Consequently, waste water disposal shifted from diffuse to urban pathways. On the one side, this led to rising nutrient loads discharged to surface waters because of insufficient nutrient removal by the early WWTPs. Otherwise, nutrient concentration in groundwater under rural areas decreased by discharge human waste via sewer systems out of the cities.

Keywords

Central Europe Data reconstruction Human waste Nutrient concentrations Nutrient inputs Nutrient loads Waste water disposal 

References

  1. Behrendt, H., Huber, P., Kornmilch, M., Ley, M., Opitz, D., Schmoll, O., et al. (1999). Nutrient emissions into river basins of Germany. UBA-Texte, 75/99, 288. UBA.Google Scholar
  2. Billen, G., Garnier, J., Deligne, C., & Billen, C. (1999). Estimates of early-industrial inputs of nutrients to river systems: implication for coastal eutrophication. Science of The Total Environment, 243–244, 43–52. doi: 10.1016/s0048-9697(99)00327-7.CrossRefGoogle Scholar
  3. Brix, J., Imhoff, K., & Weldert, R. (1934a). Die Stadtentwässerung in Deutschland (Vol. 2). Jena: Verlag von Gustav Fischer.Google Scholar
  4. Brix, J., Imhoff, K., & Weldert, R. (1934b). Die Stadtentwässerung in Deutschland (Vol. 1). Jena: Verlag von Gustav Fischer.Google Scholar
  5. Directive 2000/60/EC (2000) of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy. Official Journal of the European Communities, 327, 1–73.Google Scholar
  6. Directive 2006/118/EC (2006) of the European Parliament and of the Council of 12 December 2006 on the protection of groundwater against pollution and deterioration Official Journal of the European Communities, 372, 19–31.Google Scholar
  7. Directive 91/271/EEC (1991) of 21 May 1991 concerning urban waste-water treatment. Official Journal of the European Communities, 135, 40–52.Google Scholar
  8. EUROSTAT (2012a) Anschlussgrade der Wohnbevölkerung an Abwassersammlung und -behandlung. http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=env_watq4&lang=de. Accessed 23.03.2012.
  9. EUROSTAT (2012b) Bevölkerung nach NUTS-3 Regionen (2012b). http://appsso.eurostat.ec.europa.eu/nui/show.do?dataset=demo_r_d3dens&lang=de. Accessed 23.03.2012.
  10. Garnier, J., Brion, N., Callens, J., Passy, P., Deligne, C., Billen, G., et al. (2013). Modeling historical changes in nutrient delivery and water quality of the Zenne River (1790s–2010): the role of land use, waterscape and urban wastewater management. Journal of Marine Systems, 128(0), 62–76. doi: 10.1016/j.jmarsys.2012.04.001.CrossRefGoogle Scholar
  11. Gemeindeverzeichnis.de (2009). Gemeindeverzeichnis. http://www.gemeindeverzeichnis.de/. Accessed 11.11.2009.
  12. Główny Urząd Statystyczny Rzeczypospolitej Polskiej. (1937 & 1939). Mały Rocznik Statystyczny. Warszawa: Nakładem Głównego Urzędu Statystycznego.Google Scholar
  13. Heiden, E. (1882). Die menschlichen Excremente in national-öconomischer, hygienischer, finanzieller und landwirthschaftlicher Beziehung. Hannover: Cohen.Google Scholar
  14. Kaiserlich Statistisches Amt. (1880–1918). Statistisches Jahrbuch für das Deutsche Reich. Berlin: Verlag von Puttkammer & Mühlbrecht.Google Scholar
  15. Kjeldahl, J. (1883). Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Zeitschrift für analytische Chemie, 22(1), 366–382. doi: 10.1007/bf01338151.CrossRefGoogle Scholar
  16. König, J. (1887). Die Verunreinigung der Gewässer, deren schädliche Folgen: nebst Mitteln zur Reinigung der Schmutzwässer. Berlin: Springer.CrossRefGoogle Scholar
  17. Kronvang, B., Behrendt, H., Andersen, H., Arheimer, B., Barr, A., Borgvang, S., et al. (2009). Ensemble modelling of nutrient loads and nutrient load partitioning in 17 European catchments. Journal of Environmental Monitoring, 11(3), 572–583. doi: 10.1039/b900101h.CrossRefGoogle Scholar
  18. Lange, J. (2002). Zur Geschichte des Gewässerschutzes am Ober-und Hochrhein. Freiburg: Albert-Ludwigs-Universität Freiburg.Google Scholar
  19. Meurer, R. (2000). Wasserbau und Wasserwirtschaft in Deutschland: Vergangeneheit und Gegenwart. Berlin: Parey.CrossRefGoogle Scholar
  20. RIVM. (2007). Hydro-geological map of Europe 1:10.000.000, modified. National Institute of Public Health and the Environment (RIVM, NL).Google Scholar
  21. Salomon, H. (1907). Die städtische Abwässerbeseitigung in Deutschland: Wörterbuchartig angeordnete Nachrichten und Beschreibungen städtischer Kanalisations-und Kläranlagen in deutschen Wohnplätzen. (Abwässer-Lexikon) (Vol. 1). Jena: G. Fischer.Google Scholar
  22. Salomon, H. (1911). Die städtische Abwässerbeseitigung in Deutschland: Wörterbuchartig angeordnete Nachrichten und Beschreibungen städtischer Kanalisations-und Kläranlagen in deutschen Wohnplätzen. (Abwässer-Lexikon) (Vol. 2). Jena: G. Fischer.Google Scholar
  23. Seeger, H. (1999). The history of German wastewater treatment. Eur Water Manage, 2(5), 51–56.Google Scholar
  24. Statistisches Reichsamt. (1919–1941/42). Statistisches Jahrbuch für das Deutsche Reich. Berlin: Verlag für Politik und Wirtschaft.Google Scholar
  25. Tzanakakis, V. E., Paranychianaki, N. V., & Angelakis, A. N. (2007). Soil as a wastewater treatment system: historical development. Water Science and Technology: Water Supply, 7(1), 67–75. doi: 10.2166/ws.2007.008.Google Scholar
  26. Varrentrapp, F., & Will, H. (1841). Neue Methode zur Bestimmung des Stickstoffs in organischen Verbindungen. Justus Liebigs Annalen der Chemie, 39(3), 257–296. doi: 10.1002/jlac.18410390302.CrossRefGoogle Scholar
  27. Venohr, M., Hirt, U., Hofmann, J., Opitz, D., Gericke, A., Wetzig, A., et al. (2011). Modelling of nutrient emissions in river systems—MONERIS—methods and background. International Review of Hydrobiology, 96(5), 435–483. doi: 10.1002/iroh.201111331.CrossRefGoogle Scholar
  28. Vogt, J., Soille, P., De Jager, A., Rimaviciute, E., Mehl, W., Foisneau, S., et al. (2007). A pan-European River and Catchment Database (Vol. JRC40291): OPOCE.Google Scholar
  29. Weyl, T. (1897). Handbuch der Hygiene (Vol. 2, Städtereinigung). Jena: Gustav Fischer.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of EcohydrologyLeibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB)BerlinGermany
  2. 2.SustainabilityProject Management JülichBerlinGermany

Personalised recommendations