Chemical Dispersion of Crude Oil: Assessment of Physiological, Immune, and Antioxidant Systems in Juvenile Turbot (Scophthalmus maximus)

  • Michael TheronEmail author
  • Anne Bado-Nilles
  • Christian Beuvard
  • Morgane Danion
  • Mathieu Dussauze
  • Hélène Ollivier
  • Karine Pichavant-Rafini
  • Claire Quentel
  • Stéphane Le Floch


This work focuses on the effects of two commercial formulations of dispersants on juvenile turbot after 48 h of contamination and 15 days of recovery. Oxidative stress, gill, and immune functions were assessed in seven conditions: exposition to the water-soluble fraction of an oil, mechanical dispersion, two dispersants alone, two types of chemical dispersion and a control group. In the contaminated groups, nominal concentrations of oil and dispersants were 66 and 3.3 mg L−1, respectively. Dispersants alone had weak effects; the soluble fraction induced leucopenia and gill alteration. Chemical and mechanical dispersion induced similar effects. After contamination, a principal component analysis showed two distinct areas: the first one included the control and dispersants groups, the second one dispersion of the oil. After the 15-day recovery period, it was not possible to differentiate the groups. This study shows that, in the experimental conditions tested, the dispersion, either chemical or mechanical, enhances the consequences of exposure to crude oil without long-lasting consequences.


Chemical dispersant Physiology Immunology Oxidative stress Scophthalmus maximus 



This study was funded by the French Research National Agency and is part of the program DISCOBIOL (, coordinated by F.X. Merlin (CEDRE), and developed with UBO, ANSES, LIENSs, TOTAL, and INNOSPEC. We would like to thank Sophie, Christophe Haond, Bernard Simon, and Vanessa Simpson for their valuable help.


  1. Aas, E., Beyer, J., & Goksoyr, A. (2000). Fixed wavelength fluorescence (FF) of bile as a monitoring tool for polyaromatic hydrocarbon exposure in fish: an evaluation of compound specificity inner filter effect and signal interpretation. Biomarkers, 5, 9–23.CrossRefGoogle Scholar
  2. Ahmad, I., Pacheco, M., & Santos, M. A. (2003). Naphthalene-induced differential tissue damage association with circulating fish phagocyte induction. Ecotoxicology and Environmental Safety, 54, 7–15.CrossRefGoogle Scholar
  3. Allen, J. I., & Moore, N. M. (2004). Environmental prognostics: is the current use of biomarkers appropriate for environmental risk evaluation? Marine Environmental Research, 58, 227–232.CrossRefGoogle Scholar
  4. Astrup, P. (1956). A simple electrometric technique for the determination of carbon dioxide tension in blood and plasma, total content of carbon dioxide in plasma and bicarbonate content in ‘separated’ plasma at a fixed dioxide tension (40 mmHg). Scandinavian Journal of Clinical and Investigation, 8, 33–43.CrossRefGoogle Scholar
  5. Bado-Nilles, A., Quentel, C., Auffret, M., Le Floch, S., Renault, T., & Thomas-Guyon, H. (2009). Immune effects of HFO on European sea bass, Dicentrarchus labrax, and Pacific oyster, Crassostrea gigas. Ecotoxicology and Environmental Safety, 72, 1446–1454.CrossRefGoogle Scholar
  6. Beers, R. F., & Sizer, I. W. (1952). A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. The Journal of Biological Chemistry, 195, 133–140.Google Scholar
  7. Bonga, S. E. W. (1997). The stress response in fish. Physiological Reviews, 77, 591–625.Google Scholar
  8. Boutilier, R. G., Iwama, G. K., Heming, T. A., & Randall, D. J. (1985). The apparent pH of carbon acid in rainbow trout blood plasma between 5 and 15°C. Respiration Physiology, 61, 237–254.CrossRefGoogle Scholar
  9. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  10. Burrows, A. S., & Fletcher, T. C. (1987). Blood leucocytes of the turbot Scophtalmus maximus L. Aquaculture, 67, 214–215.CrossRefGoogle Scholar
  11. Chapman, H., Purnell, K., Law, R. J., & Kirby, M. F. (2007). The use of chemical dispersants to combat oil spills at sea: a review of practice and research needs in Europe. Marine Pollution Bulletin, 54, 827–838.CrossRefGoogle Scholar
  12. Churchill, P. F., Dudley, R. J., & Churchill, S. A. (1995). Surfactant-enhanced bioremediation. Waste Management, 15, 371–377.CrossRefGoogle Scholar
  13. Danion, M., Le Floch, S., Kanan, R., Lamour, F., & Quentel, C. (2011a). Effects of in vivo chronic hydrocarbons pollution on sanitary status and immune system in sea bass (Dicentrarchus labrax L.). Aquatic Toxicology, 105, 300–311.CrossRefGoogle Scholar
  14. Danion, M., Le Floch, S., Lamour, F., Guyomarch, J., & Quentel, C. (2011b). Bioconcentration and immunotoxicity of an experimental oil spill in European sea bass (Dicentrarchus labrax L.). Ecotoxicology and Environmental Safety, 74, 2167–2174.CrossRefGoogle Scholar
  15. Desvignes, L., Quentel, C., Lamour, F., & Le Ven, A. (2002). Pathogenesis and immune response in Atlantic salmon (Salmo salar L.) parr experimentally infected with salmon pancreas disease virus (SPDV). Fish & Shellfish Immunology, 12, 77–95.CrossRefGoogle Scholar
  16. Duarte, R. M., Honda, R. T., & Val, A. L. (2010). Acute effects of chemically dispersed crude oil on gill ion regulation, plasma ion levels and haematological parameters in tambaqui (Colossoma macropomum). Aquatic Toxicology, 97, 134–141.CrossRefGoogle Scholar
  17. Evans, D. H. (2008). Teleost fish osmoregulation: what have we learned since August Krogh, Homer Smith, and Ancel Keys. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 295, R704–R713.CrossRefGoogle Scholar
  18. Evans, D. H., Piermarini, P. M., & Choe, K. P. (2005). The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste. Physiological Reviews, 85, 97–177.CrossRefGoogle Scholar
  19. Fusey, P., & Oudot, J. (1976). Comparaison de deux méthodes d’évaluation de la biodégradation des hydrocarbures in vitro. Mater U Organ, 4, 241–251.Google Scholar
  20. Gallagher, E. P., Canada, A. T., & Di Giulio, R. T. (1992). The protective role of glutathione in chlorothalonil-induced toxicity to channel catfish. Aquatic Toxicology, 23, 155–168.CrossRefGoogle Scholar
  21. Goanvec, C., Poirier, E., Le-Floch, S., & Theron, M. (2010). Branchial structure and hydromineral equilibrium in juvenile turbot (Scophthalmus maximus) exposed to heavy fuel oil. Fish Physiology and Biochemistry, 37, 363–371.CrossRefGoogle Scholar
  22. Grinde, B., Jollès, J., & Jollès, P. (1988). Purification and characterization of two lysozyme from rainbow trout (Salmo gairdneri). European Journal of Biochemistry, 173, 269–273.CrossRefGoogle Scholar
  23. Grinwis, G. C. M., Vethaak, A. D., Wester, P. W., & Vos, G. (2000). Toxicology of environmental chemicals in the flounder (Platichthys flesus) with emphasis on the immune system: field, semi-field (mesocosm) and laboratory studies. Toxicology Letters, 112–113, 289–301.CrossRefGoogle Scholar
  24. Haensly, W. E., Neff, J. M., Sharp, J. R., Morris, A. C., Bedgood, M. F., & Boem, P. D. (1982). Histopathology of Pleuronectes platessa L. from Aber Wrac’h and Aber Benoit, Brittany, France: long-term effects of the Amoco Cadiz crude oil spill. Journal of Fish Diseases, 5, 365–391.CrossRefGoogle Scholar
  25. Heisler, N. (1986). Comparative aspects of acid-base regulation. In N. Heisler (Ed.), Comparative aspects of acid-base regulation: acid-base regulation in animals (pp. 397–449). Amsterdam: Elsevier.Google Scholar
  26. Jifa, W., Yu, Z., Xiuxian, S., & You, W. (2006). Response of integrated biomarkers of fish (Lateolabrax japonicus) exposed to benzo[a]pyrene and sodium dodecylbenzene sulfonate. Ecotoxicology and Environmental Safety, 65, 230–236.CrossRefGoogle Scholar
  27. Jung, J. H., Yim, U. H., Han, G. M., & Shim, W. J. (2009). Biochemical changes in rockfish, Sebastes schlegeli, exposed to dispersed crude oil. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 150, 218–223.Google Scholar
  28. Kappus, H. (1985). Lipid peroxidation: mechanisms, analysis, enzymology and biological relevance. In H. Sies (Ed.), Oxidative stress (pp. 273–310). London: Academic Press.CrossRefGoogle Scholar
  29. Kekic, H., & Ivanc, A. (1982). A new direct method for counting fish blood cells. Ichtyologica, 14, 55–58.Google Scholar
  30. Kennedy, C. J., & Farrell, A. P. (2005). Ion homeostasis and interrenal stress responses in juvenile Pacific Herring, Clupea pallasi, exposed to the water-soluble fraction of crude oil. Journal of Experimental Marine Biology and Ecology, 323, 43–56.CrossRefGoogle Scholar
  31. Khan, R. A. (1999). Study of pearl dace (Margariscus margarita) inhabiting a Stillwater pound contaminated with diesel oil. Bulletin of Environmental Contamination and Toxicology, 62, 638–645.CrossRefGoogle Scholar
  32. Khan, R. A., & Payne, J. F. (2005). Influence of a crude oil dispersant, Corexit 9527, and dispersed oil on Capelin (Mallotus villosus), Atlantic Cod (Gadus morhua), Longhorn Sculpin (Myoxocephalus octodecemspinosus), and Cunner (Tautogolabrus adspersus). Bulletin of Environmental Contamination and Toxicology, 75, 50–56.CrossRefGoogle Scholar
  33. Lessard, R. R., & Demarco, G. (2000). The significance of oil spill dispersants. Spill Science & Technology Bulletin, 6, 59–68.CrossRefGoogle Scholar
  34. Lewis, A., Crosbie, A., Davies, L., & Lunel, T. (1998). Large scale field experiments into oil weathering at sea and aerial application of dispersants. In proceedings of the 21st Arctic and Marine Oil Spill Program (AMOP), Edmonton, Canada.Google Scholar
  35. Lunel, T. (1995). The Braer oil spill: oil fate governed by dispersion. In Proceedings of the 1995 International Oil Spill Conference, Long Beach, California, USA.Google Scholar
  36. Lunel, T., Rusin, J., Bailey, N., Halliwell, C., & Davies, L. (1997). The net environmental benefit of a successful dispersant operation at the Sea Empress incident. In Proceedings of the 1997 International oil Spill Conference API Washington, DC, pp. 184-194.Google Scholar
  37. Martinez-Alvarez, R. M., Morales, A. E., & Sanz, A. (2005). Antioxidant defenses in fish: biotic and abiotic factors. Fish Biology and Fisheries, 15, 75–88.CrossRefGoogle Scholar
  38. Maxime, V., Pichavant, K., Boeuf, G., & Nonnotte, G. (2000). Effects of hypoxia on respiratory physiology of turbot, Scophthalmus maximu. Fish Physiology and Biochemistry, 22, 51–59.CrossRefGoogle Scholar
  39. Metcalfe, C. D. (1998). Toxicopathic responses to organic compounds. In J. F. Leatherland & P. T. K. Woo (Eds.), Fish diseases and disorders, Non-infectious disorders (Vol. 2, pp. 133–162). USA: CAB International.Google Scholar
  40. Milinkovitch, T., Godefroy, J., Theron, M., & Thomas-Guyon, H. (2011a). Toxicity of dispersant application: biomarkers responses in gills of juvenile golden grey mullet (Liza aurata). Environmental Pollution, 159, 2921–2928.CrossRefGoogle Scholar
  41. Milinkovitch, T., Ndiaye, A., Sanchez, W., Le Floch, S., & Thomas-Guyon, H. (2011b). Liver antioxidant and plasma immune responses in juvenile golden grey mullet (Liza aurata) exposed to dispersed crude oil. Aquatic Toxicology, 101, 155–164.CrossRefGoogle Scholar
  42. Mommsen, T. P., Vijayan, M. M., & Moon, T. W. (1999). Cortisol in teleosts: dynamics, mechanisms of action, and metabolic regulation. Reviews in Fish Biology and Fisheries, 9, 211–268.CrossRefGoogle Scholar
  43. Oliveira, M., Pacheco, M., & Santos, M. A. (2008). Organ specific antioxidant responses in golden grey mullet (Liza aurata) following a short-term exposure to phenanthrene. The Science of the Total Environment, 396, 70–78.CrossRefGoogle Scholar
  44. Paglia, D. E., & Valentine, W. N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. The Journal of Laboratory and Clinical Medicine, 70, 158–169.Google Scholar
  45. Paoletti, F., Aldinucci, D., Mocali, A., & Caparini, A. (1986). A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts. Analytical Biochemistry, 154, 536–541.CrossRefGoogle Scholar
  46. Perry, S. F., & Gilmour, K. M. (2006). Acid–base balance and CO2 excretion in fish: unanswered questions and emerging models. Respiratory Physiology & Neurobiology, 154, 199–215.CrossRefGoogle Scholar
  47. Petri, D., Glover, C., Ylving, S., Kolås, K., Fremmersvik, G., Waagbø, R., & Berntssen, M. (2006). Sensitivity of Atlantic salmon (Salmo salar) to dietary endosulfan as assessed by haematology, blood biochemistry, and growth parameters. Aquatic Toxicology, 80, 207–216.CrossRefGoogle Scholar
  48. Quentel, C., & Obach, A. (1992) The cellular composition of the blood and haematopoietic organs of turbot Scophthalmus maximus L. Journal of Fish Biology. 41(5), 709–716.Google Scholar
  49. Ramachandran, S. D., Hodson, P. V., Khan, C. W., & Lee, K. E. (2004). Oil dispersant increases PAH uptake by fish exposed to crude oil. Ecotoxicology and Environmental Safety, 59, 300–8.CrossRefGoogle Scholar
  50. Randall, D. J., Connell, D. W., Yang, R., & Wu, S. S. (1998). Concentrations of persistent lipophilic compounds in fish are determined by exchange across the gills, not through the food chain. Chemosphere, 37, 1263–1270.CrossRefGoogle Scholar
  51. Randelli, E., Buonocore, F., & Scapigliati, G. (2008). Cell markers and determinants in fish immunology. In NOFFI: Advances in Fish Immunology, 7th International Symposium on Fish Immunology. Stirling, 25, 326-340.Google Scholar
  52. Reynaud, S., & Deschaux, P. (2006). The effects of polycyclic aromatic hydrocarbons on the immune system of fish: a review. Aquatic Toxicology, 77, 229–238.CrossRefGoogle Scholar
  53. Saera-Vila, A., Benedito-Palos, L., Sitjà-Bobadilla, A., Nácher-Mestre, J., Serrano, R., Kaushik, S., & Pérez-Sánchez, J. (2009). Assessment of the health and antioxidant trade-off in gilthead sea bream (Sparus aurata L.) fed alternative diets with low levels of contaminants. Aquaculture, 296, 87–95.CrossRefGoogle Scholar
  54. Schirmer, K., Dixon, D. G., Greenberg, B. M., & Bols, N. C. (1998). Ability of 16 priority PAHs to be directly cytotoxic to a cell line from the rainbow trout gill. Toxicology, 127, 129–141.CrossRefGoogle Scholar
  55. Schuler, P. A., & Baca, B. (2007). Net environmental benefit analysis of dispersed oil versus nondispersed oil on coastal ecosystems & wildlife utilizing data derived from the 20-year TROPICS study. Massey J.G (Ed.), Ninth International Effects of Oil on Wildlife Conference, Monterey, Davis, California, 156-163.Google Scholar
  56. Simonato, J. D., Albinati, A. C., & Martinez, C. B. R. (2006). Effects of the water soluble fraction of diesel oil on some functional parameters of the neotropical freshwater fish Prochilodus lineatus Valenciennes. Bulletin of Environmental Contamination and Toxicology, 76, 505–511.CrossRefGoogle Scholar
  57. Siwicki, A. K., Klein, P., Studenicka, M., Terech-Majewska, E., Kazun, K., & Glombski, E. (2000). Restoration of immunity after suppression induced by xenobiotics in fish: in vitro and in vivo studies. Marine Environmental Research, 50, 468–469.CrossRefGoogle Scholar
  58. Solangi, M. A., & Overstreet, R. M. (1982). Histopathological changes in two estuarine fishes, Menidia beryllina (Cope) and Trinectes maculatus (Bloch and Schneider), exposed to crude oil and its water-soluble fractions. Journal of Fish Diseases, 5, 13–35.CrossRefGoogle Scholar
  59. Spooner, M. F. (1970). Oil spill in Tarut Bay, Saudi Arabia. Marine Pollution Bulletin, 1, 166–167.CrossRefGoogle Scholar
  60. Thomas, P., & Juedes, M. J. (1992). Influence of lead on the glutathione status of Atlantic croaker tissues. Aquatic Toxicology, 23, 11–29.CrossRefGoogle Scholar
  61. Thomas, P., & Wofford, H. W. (1984). Effects of metals and organic compounds on hepatic glutathione, cysteine, and acid-soluble thiol levels in mullet (Mugil cephalus L.). Toxicology and Applied Pharmacology, 76, 172–182.CrossRefGoogle Scholar
  62. van der Oost, R., Beyer, J., & Vermeulen, N. P. E. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental Toxicology and Pharmacology, 13, 57–149.CrossRefGoogle Scholar
  63. Vandeputte, C., Guizon, I., Genestie-Denis, I., Vannier, B., & Lorenzon, G. (1994). A microtiter plate assay for total glutathione and glutathione disulfide contents in cultured/isolated cells: performance study of a new miniaturized protocol. Cell Biology and Toxicology, 10, 415–21.CrossRefGoogle Scholar
  64. Yano, T. (1992). Assays of hemolytic complement activity. In J. S. Stolen, D. P. Anderson, S. L. Kaattari, & A. F. Rowley (Eds.), Techniques in fish immunology (pp. 131–142). Fair Haven: SOS Publications.Google Scholar
  65. Zhang, J. F., Wang, X. R., Guo, H. Y., Wu, J. C., & Xue, Y. Q. (2004). Effects of water-soluble fractions of diesel oil on the antioxidant defenses of the goldfish, Carassius auratus. Ecotoxicology and Environmental Safety, 58, 110–116.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Michael Theron
    • 1
    Email author
  • Anne Bado-Nilles
    • 2
  • Christian Beuvard
    • 1
  • Morgane Danion
    • 2
  • Mathieu Dussauze
    • 1
    • 3
  • Hélène Ollivier
    • 1
  • Karine Pichavant-Rafini
    • 1
  • Claire Quentel
    • 2
  • Stéphane Le Floch
    • 3
  1. 1.Laboratoire ORPHY EA4324Université de Bretagne OccidentaleBrest Cedex 3France
  2. 2.Anses, Ploufragan-Plouzané LaboratoryTechnopôle Brest-IroisePlouzanéFrance
  3. 3.Cedre, Centre de Documentationde Recherche et d’Expérimentations sur les Pollutions Accidentelles des EauxBrest Cedex 2France

Personalised recommendations