Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Oxidative Stress Induced by Mixture of Diclofenac and Acetaminophen on Common Carp (Cyprinus carpio)

  • 397 Accesses

  • 23 Citations

Abstract

Pharmaceutical agents, like diclofenac and acetaminophen, are sold without prescription leading to excessive use. These agents may reach water bodies through various routes and attain significant concentrations, posing a risk to hydrobiont health. Diverse studies have shown that during the biotransformation of these compounds, reactive metabolites and reactive oxygen species are produced which induce oxidative stress and damage to diverse biomolecules. However, toxicity studies that assess the effects of a mixture of contaminants are scarce, being very important as this is how they are actually in the environment. The present study aimed to evaluate the oxidative stress induced by mixture of diclofenac and acetaminophen on Cyprinus carpio and compare with the effect produced by these pharmaceuticals in isolation. A 96-h sublethal toxicity assay of the tested pharmaceuticals (isolated and in mixture) was performed and the following biomarkers were evaluated: lipid peroxidation, protein carbonyl content, and activity of the antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase. The pharmaceuticals evaluated induce oxidative stress on C. carpio in isolated form and as a mixture, but the level of damage being dependent on the organ evaluated as well as the type of toxicant and form of exposure (in isolation or as a mixture).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Asensio, C., Levoin, N., Guillaume, C., Guerquin, M., Rouguieg, K., Chrétien, F., Chapleur, Y., Netter, P., Minn, A., & Lapicque, F. (2007). Irreversible inhibition of glucose-6-phosphate dehydrogenase by the coenzyme A conjugate of ketoprofen: a key to oxidative stress induced by non-steroidal anti-inflammatory drugs? Biochemical Pharmacology, 73, 405–416.

  2. Base de Datos del Registro Nacional de Pesca y Acuacultura (2013). (RNPA), Consejo Nacional de Pesca de la Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación SAGARPA, México.

  3. Borgmann, U., Bennie, D. T., Ball, A. L., & Palabrica, V. (2007). Effect of a mixture of seven pharmaceuticals on Hyallela azteca over multiple generations. Chemosphere, 66, 1278–1283.

  4. Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye binding. Analytical Biochemistry, 72, 248–254.

  5. Büege, J. A., & Aust, S. D. (1978). Microsomal lipid peroxidation. Methods in Enzymology, 52, 302–310.

  6. Fent, K., Weston, A., & Caminada, D. (2006). Ecotoxicology of human pharmaceuticals. Aquatic Toxicology, 76, 122–159.

  7. Gómez-Lechón, M. J., Ponsoda, X., O’Connor, E., Donato, T., Castell, J. V., & Jover, R. (2003). Diclofenac induces apoptosis in hepatocytes by alteration of mitochondrial function and generation of ROS. Biochemical Pharmacology, 66, 2155–2167.

  8. Gómez-Oliván, L., Galar-Martínez, M., Téllez-Lopéz, A., Carmona-Zepeda, F., & Amaya-Chávez, A. (2009). Estudio de automedicación en una farmacia comunitaria de la Ciudad de Toluca. Revista Mexicana de Ciencias Farmacéuticas, 40, 5–11.

  9. Gómez-Oliván, L. M., Neri-Cruz, N., Galar-Martínez, M., Vieyra-Reyes, P., & García-Medina, S. (2012). Assessing the oxidative stress induced by paracetamol spiked in artificial sediment on Hyalella azteca. Water Air and Soil Pollution, 223(8), 5097–5104.

  10. Heberer, T. (2002). Ocurrence, fate and removal of pharmaceuticals residues in the aquatic environment: a review of recent research data. Toxicology Letters, 131, 5–17.

  11. Hoeger, B., Köllner, B., Dietrich, D., & Hitzfeld, B. (2005). Water-borne diclofenac affects kidney and gill integrity and selected immune parameters in brown trout (Salmo trutta f. fario). Aquatic Toxicology, 75, 53–64.

  12. Islas-Flores, H., Gómez-Oliván, L. M., Galar-Martínez, M., Colín-Cruz, A., Neri-Cruz, N., & García-Medina, S. (2013). Diclofenac-induced oxidative stress in brain, liver, gill and blood of common carp (Cyprinus carpio). Ecotox Environmental Safe, 92, 32–38.

  13. Jaeschke, H., Knight, T. R., & Bajt, M. L. (2003). The role of oxidant stress and reactive nitrogen species in acetaminophen hepatotoxicity. Toxicology Letters, 144, 279–288.

  14. Kümmerer, K. (2009). The presence of pharmaceuticals in the environment due to human use—present knowledge and future challenges. Journal of Environmental Management, 90, 2354–2366.

  15. Levine, R., Williams, J., Stadtman, E., & Shacter, E. (1994). Carbonyl assays for determination of oxidatively modified proteins. Methods in Enzymology, 233, 346–357.

  16. Li, Z. H., Li, P., Rodina, M., & Randak, T. (2010). Effect of human pharmaceutical carbamazepine on the quality parameters and oxidative stress in common carp (Cyprinus carpio L.) spermatozoa. Chemosphere, 80, 530–534.

  17. Misra, P., & Fridovich, I. (1972). The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. Journal of Biological Chemistry, 247, 3170–3175.

  18. Oviedo-Gómez, D. G. C., Galar-Martínez, M., García-Medina, S., Razo-Estrada, C., & Goméz-Oliván, L. M. (2010). Diclofenac-enriched artificial sediment induces oxidative stress in Hyalella azteca. Environmental Toxicology and Pharmacology, 29, 39–43.

  19. Paglia, D. E., & Valentine, W. N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. Journal of Laboratory and Clinical Medicine, 70, 158–169.

  20. Parolini, M., Binelli, A., Cogni, D., & Provini, A. (2010). Multi-biomarker approach for the evaluation of the cyto-genotoxicity of paracetamol on the zebra mussel (Dreissena polymorpha). Chemosphere, 79, 489–498.

  21. Parvez, S., & Raisuddin, S. (2005). Protein carbonyls: novel biomarkers of exposure to oxidative stress-inducing pesticides in freshwater fish Channa punctata (Bloch). Environmental Toxicology and Pharmacology, 20, 112–117.

  22. Radi, R., Turrens, J., Chang, Y., Bush, M., Capro, D., & Freeman, A. (1991). Detection of catalase in rat heart mitochondria. Journal of Biological Chemistry, 22, 20028–22034.

  23. Santos, L. H. M. L. M., Araújo, A. N., Fachini, A., Pena, A., Delerue-Matos, C., & Montenegro, M. C. B. S. M. (2010). Ecotoxicological aspects related to the presence of pharmaceuticals in the aquatic environment. Journal of Hazardous Materials, 175, 45–95.

  24. Scheurell, M., Franke, S., Shah, R. M., & Hühnerfuss, H. (2009). Occurrence of diclofenac and its metabolites in surface water and effluent samples from Karachi, Pakistan. Chemosphere, 77, 870–876.

  25. Schwaiger, J., Ferling, H., Mallowa, U., Wintermayr, H., & Negele, R. D. (2004). Toxic effects of the non-steroidal anti-inflammatory drug diclofenac Part I: histopathological alterations and bioaccumulation in rainbow trout. Aquatic Toxicology, 68, 141–150.

  26. Sepici-Dinçel, A., Çağlan, K. B., Mahmut, S., Rabia, S., Duygu, S., Ayhan, I. O., & Figen, E. (2009). Sublethal cyfluthrin toxicity to carp (Cyprinus carpio L.) fingerlings: biochemical, hematological, histopathological alterations. Ecotox. Environ. Safe., 72, 1433–1439.

  27. Siemens, J., Huscheka, G., Siebeb, C., & Kaupenjohann, M. (2008). Concentrations and mobility of human pharmaceuticals in the world’s largest wastewater irrigation system, Mexico City—Mezquital Valley. Water Research, 42, 2124–2134.

  28. Sinha, S., Mallick, S., Misra, R. K., Singh, S., Basant, A., & Gupta, A. K. (2007). Uptake and translocation of metals in Spinacia oleracea L. grown on tannery sludge-amended and contaminated soils: effect on lipid peroxidation, morpho-anatomical changes and antioxidants. Chemosphere, 67, 176–187.

  29. Stülten, D., Zühlke, S., Lamshöft, M., & Spiteller, M. (2008). Occurrence of diclofenac and selected metabolites in sewage effluents. Science of the Total Environment, 405, 310–316.

  30. Valavanidis, A., Vlahogiannia, T., Dassenakis, M., & Scoullos, M. (2006). Molecular biomarkers of oxidative stress in aquatic organisms in relation to toxic environmental pollutants. Ecotox. Environ. Safe., 64, 178–189.

  31. Vanegas, C., Espina, S., Botello, A. V., & Villanueva, S. (1997). Acute toxicity and synergism of cadmium and zinc in white shrimp, Penaeus setiferus, juveniles. Bulletin of Environmental Contamination and Toxicology, 58, 87–92.

  32. Zhou, J. L., Zhang, Z. L., Banks, E., Grover, D., & Jiang, J. Q. (2009). Pharmaceutical residues in wastewater treatment work effluents and their impact on receiving river water. Journal of Hazardous Materials, 166, 655–661.

Download references

Acknowledgments

This study was made possible through support from the National Science and Technology Council (CONACYT, project 151665) as well as the Research and Postgraduate Secretariat of the National Polytechnic Institute (SIP-IPN, projects 20100546 and 20121226).

Author information

Correspondence to M. Galar-Martínez.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nava-Álvarez, R., Razo-Estrada, A.C., García-Medina, S. et al. Oxidative Stress Induced by Mixture of Diclofenac and Acetaminophen on Common Carp (Cyprinus carpio). Water Air Soil Pollut 225, 1873 (2014). https://doi.org/10.1007/s11270-014-1873-5

Download citation

Keywords

  • Acetaminophen
  • Diclofenac
  • Mixtures
  • Oxidative stress
  • Lipid peroxidation
  • Oxidized proteins
  • Antioxidant enzymes
  • Cyprinus carpio